Spaces:
Paused
Paused
Update api/ltx/ltx_aduc_manager.py
Browse files- api/ltx/ltx_aduc_manager.py +215 -132
api/ltx/ltx_aduc_manager.py
CHANGED
|
@@ -1,160 +1,243 @@
|
|
| 1 |
# FILE: api/ltx/ltx_aduc_manager.py
|
| 2 |
-
# DESCRIPTION:
|
| 3 |
-
#
|
| 4 |
|
| 5 |
import logging
|
| 6 |
-
from typing import Dict, List, Optional, Tuple, Union
|
| 7 |
-
from dataclasses import dataclass
|
| 8 |
import torch
|
| 9 |
-
from diffusers.utils.torch_utils import randn_tensor
|
| 10 |
import sys
|
| 11 |
from pathlib import Path
|
| 12 |
-
import
|
| 13 |
-
import
|
| 14 |
-
import
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 19 |
-
RESULTS_DIR = Path("/app/output")
|
| 20 |
-
|
| 21 |
-
# --- Importações da nossa arquitetura ---
|
| 22 |
from managers.gpu_manager import gpu_manager
|
| 23 |
-
from api.ltx.ltx_utils import build_ltx_pipeline_on_cpu
|
| 24 |
|
|
|
|
|
|
|
| 25 |
def add_deps_to_path():
|
| 26 |
-
"""
|
| 27 |
-
Adiciona o diretório do repositório LTX ao sys.path para garantir que suas
|
| 28 |
-
bibliotecas possam ser importadas.
|
| 29 |
-
"""
|
| 30 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 31 |
if repo_path not in sys.path:
|
| 32 |
sys.path.insert(0, repo_path)
|
| 33 |
-
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 34 |
-
|
| 35 |
-
# Executa a função imediatamente para configurar o ambiente antes de qualquer importação.
|
| 36 |
add_deps_to_path()
|
| 37 |
-
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 38 |
-
|
| 39 |
-
# --- Definição dos nossos Data Classes ---
|
| 40 |
-
@dataclass
|
| 41 |
-
class ConditioningItem:
|
| 42 |
-
pixel_tensor: torch.Tensor # Sempre um tensor de pixel
|
| 43 |
-
media_frame_number: int
|
| 44 |
-
conditioning_strength: float
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
latent_tensor: torch.Tensor # Sempre um tensor latente
|
| 49 |
-
media_frame_number: int
|
| 50 |
-
conditioning_strength: float
|
| 51 |
|
| 52 |
# ==============================================================================
|
| 53 |
-
# ---
|
| 54 |
-
# Esta é a nossa versão customizada de `prepare_conditioning`
|
| 55 |
# ==============================================================================
|
| 56 |
-
def _aduc_prepare_conditioning_patch(
|
| 57 |
-
self: "LTXVideoPipeline",
|
| 58 |
-
conditioning_items: Optional[List[Union["ConditioningItem", "LatentConditioningItem"]]],
|
| 59 |
-
init_latents: torch.Tensor,
|
| 60 |
-
num_frames: int,
|
| 61 |
-
height: int,
|
| 62 |
-
width: int,
|
| 63 |
-
vae_per_channel_normalize: bool = False,
|
| 64 |
-
generator=None,
|
| 65 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
| 66 |
-
if not conditioning_items:
|
| 67 |
-
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 68 |
-
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 69 |
-
return init_latents, init_pixel_coords, None, 0
|
| 70 |
-
|
| 71 |
-
init_conditioning_mask = torch.zeros_like(init_latents[:, 0, ...], dtype=torch.float32, device=init_latents.device)
|
| 72 |
-
extra_conditioning_latents, extra_conditioning_pixel_coords, extra_conditioning_mask = [], [], []
|
| 73 |
-
extra_conditioning_num_latents = 0
|
| 74 |
-
|
| 75 |
-
for item in conditioning_items:
|
| 76 |
-
if not isinstance(item, LatentConditioningItem):
|
| 77 |
-
logger.warning("Patch ADUC: Item de condicionamento não é um LatentConditioningItem e será ignorado.")
|
| 78 |
-
continue
|
| 79 |
-
|
| 80 |
-
media_item_latents = item.latent_tensor.to(dtype=init_latents.dtype, device=init_latents.device)
|
| 81 |
-
media_frame_number, strength = item.media_frame_number, item.conditioning_strength
|
| 82 |
-
|
| 83 |
-
if media_frame_number == 0:
|
| 84 |
-
f_l, h_l, w_l = media_item_latents.shape[-3:]
|
| 85 |
-
init_latents[..., :f_l, :h_l, :w_l] = torch.lerp(init_latents[..., :f_l, :h_l, :w_l], media_item_latents, strength)
|
| 86 |
-
init_conditioning_mask[..., :f_l, :h_l, :w_l] = strength
|
| 87 |
-
else:
|
| 88 |
-
noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype)
|
| 89 |
-
media_item_latents = torch.lerp(noise, media_item_latents, strength)
|
| 90 |
-
patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents)
|
| 91 |
-
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 92 |
-
pixel_coords[:, 0] += media_frame_number
|
| 93 |
-
extra_conditioning_num_latents += patched_latents.shape[1]
|
| 94 |
-
new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device)
|
| 95 |
-
extra_conditioning_latents.append(patched_latents)
|
| 96 |
-
extra_conditioning_pixel_coords.append(pixel_coords)
|
| 97 |
-
extra_conditioning_mask.append(new_mask)
|
| 98 |
-
|
| 99 |
-
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 100 |
-
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 101 |
-
init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1))
|
| 102 |
-
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
|
| 103 |
-
|
| 104 |
-
if extra_conditioning_latents:
|
| 105 |
-
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
|
| 106 |
-
init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2)
|
| 107 |
-
init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1)
|
| 108 |
-
|
| 109 |
-
return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents
|
| 110 |
-
|
| 111 |
-
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# ==============================================================================
|
| 115 |
-
# ---
|
| 116 |
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
self.vae_device = torch.device(vae_device)
|
| 123 |
-
self.config = config
|
| 124 |
-
self.pipeline: LTXVideoPipeline = None
|
| 125 |
-
|
| 126 |
-
self._load_and_patch_pipeline()
|
| 127 |
|
| 128 |
-
def
|
| 129 |
-
|
| 130 |
-
self.pipeline, _ = build_ltx_pipeline_on_cpu(self.config)
|
| 131 |
|
| 132 |
-
logging.info(
|
| 133 |
-
|
| 134 |
-
self.
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
self.
|
| 139 |
-
logging.info(f"[LTXWorker-{self.main_device}] ✅ Pipeline 'quente', corrigido e pronto.")
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
"""Loads the YAML configuration file."""
|
| 152 |
-
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 153 |
-
with open(config_path, "r") as file:
|
| 154 |
-
return yaml.safe_load(file)
|
| 155 |
-
|
| 156 |
-
def get_pipeline(self) -> LTXVideoPipeline:
|
| 157 |
-
return self.worker.pipeline
|
| 158 |
-
|
| 159 |
-
# Instância Singleton
|
| 160 |
-
ltx_aduc_manager = LTXAducManager()
|
|
|
|
| 1 |
# FILE: api/ltx/ltx_aduc_manager.py
|
| 2 |
+
# DESCRIPTION: An advanced, fault-tolerant pool manager for LTX and VAE workers.
|
| 3 |
+
# It handles job queuing, load balancing, and health monitoring for production-grade stability.
|
| 4 |
|
| 5 |
import logging
|
|
|
|
|
|
|
| 6 |
import torch
|
|
|
|
| 7 |
import sys
|
| 8 |
from pathlib import Path
|
| 9 |
+
import threading
|
| 10 |
+
import queue
|
| 11 |
+
import time
|
| 12 |
+
from typing import List, Optional, Callable, Any, Tuple
|
| 13 |
|
| 14 |
+
# Imports dos builders e do gpu_manager
|
| 15 |
+
from api.ltx.ltx_utils import get_main_ltx_pipeline, get_main_vae
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
from managers.gpu_manager import gpu_manager
|
|
|
|
| 17 |
|
| 18 |
+
# --- Adiciona o path do LTX-Video para importação de tipos ---
|
| 19 |
+
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 20 |
def add_deps_to_path():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 22 |
if repo_path not in sys.path:
|
| 23 |
sys.path.insert(0, repo_path)
|
|
|
|
|
|
|
|
|
|
| 24 |
add_deps_to_path()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 27 |
+
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# ==============================================================================
|
| 30 |
+
# --- CLASSES DE WORKER (Especialistas em Tarefas) ---
|
|
|
|
| 31 |
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
class BaseWorker(threading.Thread):
|
| 34 |
+
"""Classe base para nossos workers com gerenciamento de estado e saúde."""
|
| 35 |
+
def __init__(self, worker_id: int, device: torch.device):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.worker_id = worker_id
|
| 38 |
+
self.device = device
|
| 39 |
+
self.is_healthy = False
|
| 40 |
+
self.is_busy = False
|
| 41 |
+
self.daemon = True # Permite que o programa principal saia
|
| 42 |
+
|
| 43 |
+
def run(self):
|
| 44 |
+
"""O loop de vida do worker, responsável por carregar os modelos."""
|
| 45 |
+
try:
|
| 46 |
+
self._load_models()
|
| 47 |
+
self.is_healthy = True
|
| 48 |
+
logging.info(f"✅ Worker {self.worker_id} ({self.__class__.__name__}) on {self.device} is healthy and ready.")
|
| 49 |
+
except Exception:
|
| 50 |
+
self.is_healthy = False
|
| 51 |
+
logging.error(f"❌ Worker {self.worker_id} on {self.device} FAILED to initialize!", exc_info=True)
|
| 52 |
+
|
| 53 |
+
def _load_models(self):
|
| 54 |
+
"""Método a ser implementado pelas classes filhas."""
|
| 55 |
+
raise NotImplementedError
|
| 56 |
+
|
| 57 |
+
def get_status(self) -> Tuple[bool, bool]:
|
| 58 |
+
"""Retorna (is_healthy, is_busy)."""
|
| 59 |
+
return self.is_healthy, self.is_busy
|
| 60 |
+
|
| 61 |
+
class LTXMainWorker(BaseWorker):
|
| 62 |
+
"""Worker especialista para o pipeline principal do LTX."""
|
| 63 |
+
def __init__(self, worker_id: int, device: torch.device):
|
| 64 |
+
super().__init__(worker_id, device)
|
| 65 |
+
self.pipeline: Optional[LTXVideoPipeline] = None
|
| 66 |
+
|
| 67 |
+
def _load_models(self):
|
| 68 |
+
logging.info(f"[LTXWorker-{self.worker_id}] Loading models to CPU...")
|
| 69 |
+
self.pipeline = get_main_ltx_pipeline()
|
| 70 |
+
logging.info(f"[LTXWorker-{self.worker_id}] Moving pipeline to {self.device}...")
|
| 71 |
+
self.pipeline.to(self.device)
|
| 72 |
+
|
| 73 |
+
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
| 74 |
+
"""Executa um trabalho, gerenciando o estado 'busy'."""
|
| 75 |
+
self.is_busy = True
|
| 76 |
+
logging.info(f"Worker {self.worker_id} (LTX) starting job: {job_func.__name__}")
|
| 77 |
+
try:
|
| 78 |
+
result = job_func(self.pipeline, *args, **kwargs)
|
| 79 |
+
logging.info(f"Worker {self.worker_id} (LTX) finished job successfully.")
|
| 80 |
+
return result
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logging.error(f"Worker {self.worker_id} (LTX) job failed!", exc_info=True)
|
| 83 |
+
self.is_healthy = False # Falha em um job marca o worker como não saudável
|
| 84 |
+
raise
|
| 85 |
+
finally:
|
| 86 |
+
self.is_busy = False
|
| 87 |
+
|
| 88 |
+
class VAEWorker(BaseWorker):
|
| 89 |
+
"""Worker especialista para o modelo VAE."""
|
| 90 |
+
def __init__(self, worker_id: int, device: torch.device):
|
| 91 |
+
super().__init__(worker_id, device)
|
| 92 |
+
self.vae: Optional[CausalVideoAutoencoder] = None
|
| 93 |
+
|
| 94 |
+
def _load_models(self):
|
| 95 |
+
logging.info(f"[VAEWorker-{self.worker_id}] Loading VAE model to CPU...")
|
| 96 |
+
self.vae = get_main_vae()
|
| 97 |
+
logging.info(f"[VAEWorker-{self.worker_id}] Moving VAE to {self.device}...")
|
| 98 |
+
self.vae.to(self.device)
|
| 99 |
+
self.vae.eval()
|
| 100 |
+
|
| 101 |
+
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
| 102 |
+
"""Executa um trabalho, gerenciando o estado 'busy'."""
|
| 103 |
+
self.is_busy = True
|
| 104 |
+
logging.info(f"Worker {self.worker_id} (VAE) starting job: {job_func.__name__}")
|
| 105 |
+
try:
|
| 106 |
+
result = job_func(self.vae, *args, **kwargs)
|
| 107 |
+
logging.info(f"Worker {self.worker_id} (VAE) finished job successfully.")
|
| 108 |
+
return result
|
| 109 |
+
except Exception as e:
|
| 110 |
+
logging.error(f"Worker {self.worker_id} (VAE) job failed!", exc_info=True)
|
| 111 |
+
self.is_healthy = False
|
| 112 |
+
raise
|
| 113 |
+
finally:
|
| 114 |
+
self.is_busy = False
|
| 115 |
|
| 116 |
# ==============================================================================
|
| 117 |
+
# --- O GERENCIADOR DE POOL AVANÇADO (SINGLETON) ---
|
| 118 |
# ==============================================================================
|
| 119 |
+
class LTXAducManager:
|
| 120 |
+
_instance = None
|
| 121 |
+
_initialized = False
|
| 122 |
|
| 123 |
+
def __new__(cls, *args, **kwargs):
|
| 124 |
+
if cls._instance is None:
|
| 125 |
+
cls._instance = super().__new__(cls)
|
| 126 |
+
return cls._instance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
def __init__(self):
|
| 129 |
+
if self._initialized: return
|
|
|
|
| 130 |
|
| 131 |
+
logging.info("🏭 Initializing Advanced Pool Manager for LTX...")
|
| 132 |
+
|
| 133 |
+
self.ltx_workers: List[LTXMainWorker] = []
|
| 134 |
+
self.vae_workers: List[VAEWorker] = []
|
| 135 |
+
self.ltx_job_queue = queue.Queue()
|
| 136 |
+
self.vae_job_queue = queue.Queue()
|
| 137 |
+
self.pool_lock = threading.Lock()
|
|
|
|
| 138 |
|
| 139 |
+
self._initialize_workers()
|
| 140 |
+
|
| 141 |
+
# Inicia threads consumidores para processar as filas
|
| 142 |
+
self.ltx_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.ltx_job_queue, self.ltx_workers), daemon=True)
|
| 143 |
+
self.vae_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.vae_job_queue, self.vae_workers), daemon=True)
|
| 144 |
+
self.health_monitor = threading.Thread(target=self._health_check_loop, daemon=True)
|
| 145 |
+
|
| 146 |
+
self.ltx_dispatcher.start()
|
| 147 |
+
self.vae_dispatcher.start()
|
| 148 |
+
self.health_monitor.start()
|
| 149 |
+
|
| 150 |
+
self._initialized = True
|
| 151 |
+
logging.info("✅ Advanced Pool Manager is running with all threads started.")
|
| 152 |
+
|
| 153 |
+
def _initialize_workers(self):
|
| 154 |
+
"""Cria e inicia os workers com base nas GPUs alocadas."""
|
| 155 |
+
# Supondo que gpu_manager agora tenha get_ltx_devices() e get_seedvr_devices() que retornam listas
|
| 156 |
+
ltx_gpus = gpu_manager.get_ltx_device() # Ajuste se o nome for diferente
|
| 157 |
+
vae_gpus = gpu_manager.get_ltx_vae_device() # Ajuste se o nome for diferente
|
| 158 |
+
|
| 159 |
+
with self.pool_lock:
|
| 160 |
+
for i, device_id in enumerate([ltx_gpus]): # Assumindo que retorna uma lista
|
| 161 |
+
worker = LTXMainWorker(worker_id=i, device=torch.device(f"cuda:{device_id}"))
|
| 162 |
+
self.ltx_workers.append(worker)
|
| 163 |
+
worker.start()
|
| 164 |
+
|
| 165 |
+
for i, device_id in enumerate([vae_gpus]): # Assumindo que retorna uma lista
|
| 166 |
+
worker = VAEWorker(worker_id=i, device=torch.device(f"cuda:{device_id}"))
|
| 167 |
+
self.vae_workers.append(worker)
|
| 168 |
+
worker.start()
|
| 169 |
+
|
| 170 |
+
def _get_available_worker(self, worker_pool: List[BaseWorker]) -> Optional[BaseWorker]:
|
| 171 |
+
"""Encontra um worker saudável e desocupado no pool."""
|
| 172 |
+
with self.pool_lock:
|
| 173 |
+
for worker in worker_pool:
|
| 174 |
+
healthy, busy = worker.get_status()
|
| 175 |
+
if healthy and not busy:
|
| 176 |
+
return worker
|
| 177 |
+
return None
|
| 178 |
+
|
| 179 |
+
def _dispatch_jobs(self, job_queue: queue.Queue, worker_pool: List[BaseWorker]):
|
| 180 |
+
"""Loop do thread consumidor que pega trabalhos da fila e os despacha."""
|
| 181 |
+
while True:
|
| 182 |
+
job_func, args, kwargs, future = job_queue.get()
|
| 183 |
+
worker = None
|
| 184 |
+
while worker is None:
|
| 185 |
+
worker = self._get_available_worker(worker_pool)
|
| 186 |
+
if worker is None:
|
| 187 |
+
time.sleep(0.1) # Espera por um worker ficar livre
|
| 188 |
+
|
| 189 |
+
try:
|
| 190 |
+
result = worker.execute(job_func, args, kwargs)
|
| 191 |
+
future.put(result)
|
| 192 |
+
except Exception as e:
|
| 193 |
+
future.put(e)
|
| 194 |
+
|
| 195 |
+
def _health_check_loop(self):
|
| 196 |
+
"""Thread que periodicamente verifica e reinicia workers não saudáveis."""
|
| 197 |
+
while True:
|
| 198 |
+
time.sleep(30)
|
| 199 |
+
logging.debug("Running health check on all workers...")
|
| 200 |
+
with self.pool_lock:
|
| 201 |
+
for i, worker in enumerate(self.ltx_workers):
|
| 202 |
+
if not worker.is_alive() or not worker.is_healthy:
|
| 203 |
+
logging.warning(f"LTX Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 204 |
+
new_worker = LTXMainWorker(worker.worker_id, worker.device)
|
| 205 |
+
self.ltx_workers[i] = new_worker
|
| 206 |
+
new_worker.start()
|
| 207 |
+
# Repetir o laço para VAE workers
|
| 208 |
+
for i, worker in enumerate(self.vae_workers):
|
| 209 |
+
if not worker.is_alive() or not worker.is_healthy:
|
| 210 |
+
logging.warning(f"VAE Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 211 |
+
new_worker = VAEWorker(worker.worker_id, worker.device)
|
| 212 |
+
self.vae_workers[i] = new_worker
|
| 213 |
+
new_worker.start()
|
| 214 |
+
|
| 215 |
+
def submit_job(self, job_type: str, job_func: Callable, *args, **kwargs) -> Any:
|
| 216 |
+
"""
|
| 217 |
+
Ponto de entrada público para submeter um trabalho ao pool.
|
| 218 |
+
Esta função é síncrona: ela espera pelo resultado.
|
| 219 |
+
"""
|
| 220 |
+
if job_type not in ['ltx', 'vae']:
|
| 221 |
+
raise ValueError("Invalid job_type. Must be 'ltx' or 'vae'.")
|
| 222 |
+
|
| 223 |
+
job_queue = self.ltx_job_queue if job_type == 'ltx' else self.vae_job_queue
|
| 224 |
+
future = queue.Queue() # Usamos uma fila como um 'future' para obter o resultado de volta
|
| 225 |
|
| 226 |
+
job_queue.put((job_func, args, kwargs, future))
|
| 227 |
+
|
| 228 |
+
# Bloqueia e espera pelo resultado ser colocado no 'future' pelo dispatcher
|
| 229 |
+
result = future.get()
|
| 230 |
+
|
| 231 |
+
if isinstance(result, Exception):
|
| 232 |
+
raise result # Se o job falhou, re-lança a exceção no thread principal
|
| 233 |
+
|
| 234 |
+
return result
|
| 235 |
|
| 236 |
+
# ==============================================================================
|
| 237 |
+
# --- INSTANCIAÇÃO GLOBAL ---
|
| 238 |
+
# ==============================================================================
|
| 239 |
+
try:
|
| 240 |
+
ltx_aduc_manager = LTXAducManager()
|
| 241 |
+
except Exception as e:
|
| 242 |
+
logging.critical("CRITICAL ERROR: Failed to initialize the LTXAducManager pool.", exc_info=True)
|
| 243 |
+
ltx_aduc_manager = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|