Spaces:
Paused
Paused
Update api/ltx/ltx_aduc_manager.py
Browse files- api/ltx/ltx_aduc_manager.py +90 -142
api/ltx/ltx_aduc_manager.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
# FILE: api/ltx/ltx_aduc_manager.py
|
| 2 |
-
# DESCRIPTION:
|
| 3 |
-
#
|
|
|
|
| 4 |
|
| 5 |
import logging
|
| 6 |
import torch
|
|
@@ -10,12 +11,13 @@ import threading
|
|
| 10 |
import queue
|
| 11 |
import time
|
| 12 |
import yaml
|
|
|
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
from typing import List, Optional, Callable, Any, Tuple, Dict
|
| 15 |
-
|
| 16 |
# --- Importa o gerenciador de GPUs e o builder de baixo nível ---
|
| 17 |
from managers.gpu_manager import gpu_manager
|
| 18 |
-
from api.ltx.ltx_utils import
|
| 19 |
|
| 20 |
# --- Adiciona o path do LTX-Video para importação de tipos ---
|
| 21 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
@@ -26,174 +28,138 @@ def add_deps_to_path():
|
|
| 26 |
add_deps_to_path()
|
| 27 |
|
| 28 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 29 |
-
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 30 |
|
| 31 |
# ==============================================================================
|
| 32 |
-
# ---
|
| 33 |
# ==============================================================================
|
| 34 |
|
| 35 |
-
|
| 36 |
-
"""
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
super().__init__()
|
| 39 |
self.worker_id = worker_id
|
| 40 |
-
self.
|
| 41 |
-
self.model = model
|
| 42 |
self.is_healthy = False
|
| 43 |
self.is_busy = False
|
| 44 |
self.daemon = True
|
|
|
|
| 45 |
|
| 46 |
def run(self):
|
| 47 |
-
"""
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
self.
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
self.is_healthy = True
|
| 53 |
-
logging.info(f"✅
|
| 54 |
-
|
| 55 |
self.is_healthy = False
|
| 56 |
-
logging.error(f"❌
|
| 57 |
-
|
| 58 |
-
def _post_load_hook(self):
|
| 59 |
-
"""Gancho para ações pós-carregamento, como chamar .eval()."""
|
| 60 |
-
pass
|
| 61 |
-
|
| 62 |
-
def get_status(self) -> Tuple[bool, bool]:
|
| 63 |
-
return self.is_healthy, self.is_busy
|
| 64 |
-
|
| 65 |
-
class LTXMainWorker(BaseWorker):
|
| 66 |
-
"""Worker especialista para o pipeline principal do LTX."""
|
| 67 |
-
def __init__(self, worker_id: int, device: torch.device, pipeline: LTXVideoPipeline):
|
| 68 |
-
super().__init__(worker_id, device, pipeline)
|
| 69 |
-
self.pipeline = self.model
|
| 70 |
-
self.autocast_dtype: torch.dtype = torch.float32
|
| 71 |
-
|
| 72 |
-
def _post_load_hook(self):
|
| 73 |
-
self._set_precision_policy()
|
| 74 |
|
| 75 |
def _set_precision_policy(self):
|
| 76 |
-
|
|
|
|
| 77 |
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 78 |
-
with open(config_path, "r") as file:
|
| 79 |
-
config = yaml.safe_load(file)
|
| 80 |
precision = str(config.get("precision", "bfloat16")).lower()
|
| 81 |
if precision in ["float8_e4m3fn", "bfloat16"]: self.autocast_dtype = torch.bfloat16
|
| 82 |
elif precision == "mixed_precision": self.autocast_dtype = torch.float16
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
#logging.warning(f"[LTXWorker-{self.worker_id}] Could not set precision policy from config. Defaulting to float32. Error: {e}")
|
| 86 |
|
| 87 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
| 88 |
self.is_busy = True
|
| 89 |
-
|
|
|
|
| 90 |
result = job_func(self.pipeline, self.autocast_dtype, *args, **kwargs)
|
| 91 |
return result
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
class VAEWorker(BaseWorker):
|
| 99 |
-
"""Worker especialista para o modelo VAE."""
|
| 100 |
-
def __init__(self, worker_id: int, device: torch.device, vae: CausalVideoAutoencoder):
|
| 101 |
-
super().__init__(worker_id, device, vae)
|
| 102 |
-
self.vae = self.model
|
| 103 |
-
|
| 104 |
-
def _post_load_hook(self):
|
| 105 |
-
self.vae.eval()
|
| 106 |
-
|
| 107 |
-
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
| 108 |
-
self.is_busy = True
|
| 109 |
-
if True: #try:
|
| 110 |
-
result = job_func(self.vae, *args, **kwargs)
|
| 111 |
-
return result
|
| 112 |
-
#except Exception:
|
| 113 |
-
# self.is_healthy = False
|
| 114 |
-
# raise
|
| 115 |
-
#finally:
|
| 116 |
-
# self.is_busy = False
|
| 117 |
|
| 118 |
# ==============================================================================
|
| 119 |
-
# --- O GERENCIADOR DE POOL
|
| 120 |
# ==============================================================================
|
| 121 |
class LTXAducManager:
|
| 122 |
_instance = None
|
| 123 |
_initialized = False
|
| 124 |
|
| 125 |
def __new__(cls, *args, **kwargs):
|
| 126 |
-
if cls._instance is None:
|
| 127 |
-
cls._instance = super().__new__(cls)
|
| 128 |
return cls._instance
|
| 129 |
|
| 130 |
def __init__(self):
|
| 131 |
if self._initialized: return
|
| 132 |
|
| 133 |
-
logging.info("🏭 Initializing
|
| 134 |
|
| 135 |
-
self.
|
| 136 |
-
self.
|
| 137 |
-
self.ltx_job_queue = queue.Queue()
|
| 138 |
-
self.vae_job_queue = queue.Queue()
|
| 139 |
self.pool_lock = threading.Lock()
|
| 140 |
|
| 141 |
-
# Carrega os modelos na CPU antes de criar os workers
|
| 142 |
-
self.main_pipeline, self.main_vae = self._load_components_once()
|
| 143 |
-
|
| 144 |
self._initialize_workers()
|
| 145 |
|
| 146 |
-
self.
|
| 147 |
-
self.vae_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.vae_job_queue, self.vae_workers), daemon=True)
|
| 148 |
self.health_monitor = threading.Thread(target=self._health_check_loop, daemon=True)
|
| 149 |
-
|
| 150 |
-
self.ltx_dispatcher.start()
|
| 151 |
-
self.vae_dispatcher.start()
|
| 152 |
self.health_monitor.start()
|
| 153 |
|
| 154 |
self._initialized = True
|
| 155 |
-
logging.info("✅
|
| 156 |
-
|
| 157 |
-
def _load_components_once(self) -> Tuple[LTXVideoPipeline, CausalVideoAutoencoder]:
|
| 158 |
-
"""Orquestra a construção de TODOS os componentes na CPU uma única vez."""
|
| 159 |
-
logging.info("Manager loading all components onto CPU...")
|
| 160 |
-
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 161 |
-
with open(config_path, "r") as file:
|
| 162 |
-
config = yaml.safe_load(file)
|
| 163 |
-
|
| 164 |
-
ckpt_path = hf_hub_download(repo_id="Lightricks/LTX-Video", filename=config["checkpoint_path"], cache_dir=os.environ.get("HF_HOME"))
|
| 165 |
-
pipeline, vae = build_components_on_cpu(ckpt_path, config)
|
| 166 |
-
logging.info("✅ All components loaded to CPU successfully.")
|
| 167 |
-
return pipeline, vae
|
| 168 |
|
| 169 |
def _initialize_workers(self):
|
| 170 |
-
"""Cria e inicia os workers, injetando os modelos já carregados."""
|
| 171 |
-
ltx_device = gpu_manager.get_ltx_device()
|
| 172 |
-
vae_device = gpu_manager.get_ltx_vae_device()
|
| 173 |
-
|
| 174 |
with self.pool_lock:
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
self.vae_workers.append(vae_worker)
|
| 181 |
-
vae_worker.start()
|
| 182 |
|
| 183 |
-
def _get_available_worker(self
|
| 184 |
with self.pool_lock:
|
| 185 |
-
for worker in
|
| 186 |
-
|
| 187 |
-
|
| 188 |
return None
|
| 189 |
|
| 190 |
-
def _dispatch_jobs(self
|
| 191 |
while True:
|
| 192 |
-
job_func, args, kwargs, future = job_queue.get()
|
| 193 |
worker = None
|
| 194 |
while worker is None:
|
| 195 |
-
worker = self._get_available_worker(
|
| 196 |
-
if worker is None: time.sleep(0.1)
|
| 197 |
try:
|
| 198 |
result = worker.execute(job_func, args, kwargs)
|
| 199 |
future.put(result)
|
|
@@ -204,37 +170,19 @@ class LTXAducManager:
|
|
| 204 |
while True:
|
| 205 |
time.sleep(30)
|
| 206 |
with self.pool_lock:
|
| 207 |
-
for i, worker in enumerate(self.
|
| 208 |
-
if not worker.is_alive() or not worker.is_healthy:
|
| 209 |
-
logging.warning(f"LTX Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 210 |
-
new_worker = LTXMainWorker(worker.worker_id, worker.device, self.main_pipeline)
|
| 211 |
-
self.ltx_workers[i] = new_worker
|
| 212 |
-
new_worker.start()
|
| 213 |
-
|
| 214 |
-
for i, worker in enumerate(self.vae_workers):
|
| 215 |
if not worker.is_alive() or not worker.is_healthy:
|
| 216 |
-
logging.warning(f"
|
| 217 |
-
new_worker =
|
| 218 |
-
self.
|
| 219 |
new_worker.start()
|
| 220 |
|
| 221 |
-
def submit_job(self,
|
| 222 |
-
if job_type not in ['ltx', 'vae']:
|
| 223 |
-
raise ValueError("Invalid job_type. Must be 'ltx' or 'vae'.")
|
| 224 |
-
|
| 225 |
-
job_queue = self.ltx_job_queue if job_type == 'ltx' else self.vae_job_queue
|
| 226 |
future = queue.Queue(1)
|
| 227 |
-
job_queue.put((job_func, args, kwargs, future))
|
| 228 |
result = future.get()
|
| 229 |
-
|
| 230 |
-
if isinstance(result, Exception):
|
| 231 |
-
raise result
|
| 232 |
-
|
| 233 |
return result
|
| 234 |
|
| 235 |
# --- INSTANCIAÇÃO GLOBAL ---
|
| 236 |
-
|
| 237 |
-
ltx_aduc_manager = LTXAducManager()
|
| 238 |
-
#except Exception:
|
| 239 |
-
# logging.critical("CRITICAL ERROR: Failed to initialize the LTXAducManager pool.", exc_info=True)
|
| 240 |
-
# ltx_aduc_manager = None
|
|
|
|
| 1 |
# FILE: api/ltx/ltx_aduc_manager.py
|
| 2 |
+
# DESCRIPTION: A simplified, robust pool manager for a unified LTX worker.
|
| 3 |
+
# This worker handles all tasks, including Transformer generation and VAE operations,
|
| 4 |
+
# while still respecting the GPU separation defined by the GPUManager.
|
| 5 |
|
| 6 |
import logging
|
| 7 |
import torch
|
|
|
|
| 11 |
import queue
|
| 12 |
import time
|
| 13 |
import yaml
|
| 14 |
+
import os
|
| 15 |
from huggingface_hub import hf_hub_download
|
| 16 |
from typing import List, Optional, Callable, Any, Tuple, Dict
|
| 17 |
+
|
| 18 |
# --- Importa o gerenciador de GPUs e o builder de baixo nível ---
|
| 19 |
from managers.gpu_manager import gpu_manager
|
| 20 |
+
from api.ltx.ltx_utils import build_complete_pipeline_on_cpu, create_transformer
|
| 21 |
|
| 22 |
# --- Adiciona o path do LTX-Video para importação de tipos ---
|
| 23 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
|
|
| 28 |
add_deps_to_path()
|
| 29 |
|
| 30 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
|
|
|
| 31 |
|
| 32 |
# ==============================================================================
|
| 33 |
+
# --- FUNÇÃO DE ORQUESTRAÇÃO DA CONSTRUÇÃO (Interna ao Manager) ---
|
| 34 |
# ==============================================================================
|
| 35 |
|
| 36 |
+
def get_complete_pipeline() -> LTXVideoPipeline:
|
| 37 |
+
"""
|
| 38 |
+
Orquestra a construção do pipeline LTX COMPLETO, incluindo o VAE, na CPU.
|
| 39 |
+
"""
|
| 40 |
+
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 41 |
+
with open(config_path, "r") as file:
|
| 42 |
+
config = yaml.safe_load(file)
|
| 43 |
+
|
| 44 |
+
ckpt_path = hf_hub_download(
|
| 45 |
+
repo_id="Lightricks/LTX-Video",
|
| 46 |
+
filename=config["checkpoint_path"],
|
| 47 |
+
cache_dir=os.environ.get("HF_HOME")
|
| 48 |
+
)
|
| 49 |
+
return build_complete_pipeline_on_cpu(ckpt_path, config)
|
| 50 |
+
|
| 51 |
+
# ==============================================================================
|
| 52 |
+
# --- CLASSE DE WORKER UNIFICADO ---
|
| 53 |
+
# ==============================================================================
|
| 54 |
+
|
| 55 |
+
class LTXWorker(threading.Thread):
|
| 56 |
+
"""
|
| 57 |
+
Um worker unificado que gerencia uma instância completa do pipeline LTX.
|
| 58 |
+
Ele carrega o modelo e distribui seus componentes (Transformer/VAE) para as GPUs corretas.
|
| 59 |
+
"""
|
| 60 |
+
def __init__(self, worker_id: int):
|
| 61 |
super().__init__()
|
| 62 |
self.worker_id = worker_id
|
| 63 |
+
self.pipeline: Optional[LTXVideoPipeline] = None
|
|
|
|
| 64 |
self.is_healthy = False
|
| 65 |
self.is_busy = False
|
| 66 |
self.daemon = True
|
| 67 |
+
self.autocast_dtype: torch.dtype = torch.float32
|
| 68 |
|
| 69 |
def run(self):
|
| 70 |
+
"""Inicializa o worker: carrega o pipeline e o move para as GPUs."""
|
| 71 |
+
try:
|
| 72 |
+
self.pipeline = get_complete_pipeline()
|
| 73 |
+
self._set_precision_policy()
|
| 74 |
+
|
| 75 |
+
main_device = gpu_manager.get_ltx_device()
|
| 76 |
+
vae_device = gpu_manager.get_ltx_vae_device()
|
| 77 |
+
|
| 78 |
+
logging.info(f"[LTXWorker-{self.worker_id}] Moving components -> Main: {main_device}, VAE: {vae_device}")
|
| 79 |
+
self.pipeline.to(main_device) # Move tudo para a GPU principal primeiro
|
| 80 |
+
self.pipeline.vae.to(vae_device) # Move especificamente o VAE para sua GPU dedicada
|
| 81 |
+
|
| 82 |
self.is_healthy = True
|
| 83 |
+
logging.info(f"✅ LTXWorker {self.worker_id} is healthy. Main on {main_device}, VAE on {vae_device}.")
|
| 84 |
+
except Exception:
|
| 85 |
self.is_healthy = False
|
| 86 |
+
logging.error(f"❌ LTXWorker {self.worker_id} FAILED to initialize!", exc_info=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
def _set_precision_policy(self):
|
| 89 |
+
"""Define a política de precisão para operações de autocast."""
|
| 90 |
+
try:
|
| 91 |
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 92 |
+
with open(config_path, "r") as file: config = yaml.safe_load(file)
|
|
|
|
| 93 |
precision = str(config.get("precision", "bfloat16")).lower()
|
| 94 |
if precision in ["float8_e4m3fn", "bfloat16"]: self.autocast_dtype = torch.bfloat16
|
| 95 |
elif precision == "mixed_precision": self.autocast_dtype = torch.float16
|
| 96 |
+
except Exception:
|
| 97 |
+
logging.warning(f"[LTXWorker-{self.worker_id}] Could not set precision policy, defaulting to float32.", exc_info=True)
|
|
|
|
| 98 |
|
| 99 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
| 100 |
self.is_busy = True
|
| 101 |
+
try:
|
| 102 |
+
# O job recebe o pipeline completo e o dtype para o autocast
|
| 103 |
result = job_func(self.pipeline, self.autocast_dtype, *args, **kwargs)
|
| 104 |
return result
|
| 105 |
+
except Exception:
|
| 106 |
+
self.is_healthy = False
|
| 107 |
+
raise
|
| 108 |
+
finally:
|
| 109 |
+
self.is_busy = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
# ==============================================================================
|
| 112 |
+
# --- O GERENCIADOR DE POOL (SINGLETON) ---
|
| 113 |
# ==============================================================================
|
| 114 |
class LTXAducManager:
|
| 115 |
_instance = None
|
| 116 |
_initialized = False
|
| 117 |
|
| 118 |
def __new__(cls, *args, **kwargs):
|
| 119 |
+
if cls._instance is None: cls._instance = super().__new__(cls)
|
|
|
|
| 120 |
return cls._instance
|
| 121 |
|
| 122 |
def __init__(self):
|
| 123 |
if self._initialized: return
|
| 124 |
|
| 125 |
+
logging.info("🏭 Initializing Simplified Pool Manager for LTX...")
|
| 126 |
|
| 127 |
+
self.workers: List[LTXWorker] = []
|
| 128 |
+
self.job_queue = queue.Queue()
|
|
|
|
|
|
|
| 129 |
self.pool_lock = threading.Lock()
|
| 130 |
|
|
|
|
|
|
|
|
|
|
| 131 |
self._initialize_workers()
|
| 132 |
|
| 133 |
+
self.dispatcher = threading.Thread(target=self._dispatch_jobs, daemon=True)
|
|
|
|
| 134 |
self.health_monitor = threading.Thread(target=self._health_check_loop, daemon=True)
|
| 135 |
+
self.dispatcher.start()
|
|
|
|
|
|
|
| 136 |
self.health_monitor.start()
|
| 137 |
|
| 138 |
self._initialized = True
|
| 139 |
+
logging.info("✅ Simplified Pool Manager is running.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
def _initialize_workers(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
with self.pool_lock:
|
| 143 |
+
# Por enquanto, criamos um único worker unificado.
|
| 144 |
+
# No futuro, este loop pode criar múltiplos workers se houver mais GPUs.
|
| 145 |
+
worker = LTXWorker(worker_id=0)
|
| 146 |
+
self.workers.append(worker)
|
| 147 |
+
worker.start()
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
def _get_available_worker(self) -> Optional[LTXWorker]:
|
| 150 |
with self.pool_lock:
|
| 151 |
+
for worker in self.workers:
|
| 152 |
+
if worker.is_healthy and not worker.is_busy:
|
| 153 |
+
return worker
|
| 154 |
return None
|
| 155 |
|
| 156 |
+
def _dispatch_jobs(self):
|
| 157 |
while True:
|
| 158 |
+
job_func, args, kwargs, future = self.job_queue.get()
|
| 159 |
worker = None
|
| 160 |
while worker is None:
|
| 161 |
+
worker = self._get_available_worker()
|
| 162 |
+
if worker is None: time.sleep(0.1)
|
| 163 |
try:
|
| 164 |
result = worker.execute(job_func, args, kwargs)
|
| 165 |
future.put(result)
|
|
|
|
| 170 |
while True:
|
| 171 |
time.sleep(30)
|
| 172 |
with self.pool_lock:
|
| 173 |
+
for i, worker in enumerate(self.workers):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
if not worker.is_alive() or not worker.is_healthy:
|
| 175 |
+
logging.warning(f"LTX Worker {worker.worker_id} is UNHEALTHY. Restarting...")
|
| 176 |
+
new_worker = LTXWorker(worker_id=worker.worker_id)
|
| 177 |
+
self.workers[i] = new_worker
|
| 178 |
new_worker.start()
|
| 179 |
|
| 180 |
+
def submit_job(self, job_func: Callable, *args, **kwargs) -> Any:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
future = queue.Queue(1)
|
| 182 |
+
self.job_queue.put((job_func, args, kwargs, future))
|
| 183 |
result = future.get()
|
| 184 |
+
if isinstance(result, Exception): raise result
|
|
|
|
|
|
|
|
|
|
| 185 |
return result
|
| 186 |
|
| 187 |
# --- INSTANCIAÇÃO GLOBAL ---
|
| 188 |
+
ltx_aduc_manager = LTXAducManager()
|
|
|
|
|
|
|
|
|
|
|
|