Spaces:
Paused
Paused
Update api/ltx_server_refactored_complete.py
Browse files
api/ltx_server_refactored_complete.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
# FILE: api/ltx_server_refactored_complete.py
|
| 2 |
-
# DESCRIPTION: Final orchestrator for LTX-Video generation.
|
| 3 |
-
#
|
| 4 |
-
# delegation to
|
| 5 |
|
| 6 |
import gc
|
| 7 |
import json
|
|
@@ -13,7 +13,7 @@ import tempfile
|
|
| 13 |
import time
|
| 14 |
from pathlib import Path
|
| 15 |
from typing import Dict, List, Optional, Tuple
|
| 16 |
-
|
| 17 |
import torch
|
| 18 |
import yaml
|
| 19 |
import numpy as np
|
|
@@ -24,7 +24,6 @@ from huggingface_hub import hf_hub_download
|
|
| 24 |
# ==============================================================================
|
| 25 |
|
| 26 |
# Configuração de logging e supressão de warnings
|
| 27 |
-
# (Pode ser removido se o logging for configurado globalmente)
|
| 28 |
import warnings
|
| 29 |
warnings.filterwarnings("ignore")
|
| 30 |
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
|
|
@@ -179,31 +178,46 @@ class VideoService:
|
|
| 179 |
except Exception: pass
|
| 180 |
|
| 181 |
# ==========================================================================
|
| 182 |
-
# --- LÓGICA DE NEGÓCIO:
|
| 183 |
# ==========================================================================
|
| 184 |
|
| 185 |
@log_function_io
|
| 186 |
-
def
|
| 187 |
-
"""
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
| 190 |
seed_everything(used_seed)
|
|
|
|
| 191 |
|
| 192 |
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
|
| 193 |
if not prompt_list: raise ValueError("Prompt is empty or contains no valid lines.")
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
num_chunks = len(prompt_list)
|
| 196 |
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
|
| 197 |
-
frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT
|
| 198 |
-
overlap_frames = self.config.get("overlap_frames", 8)
|
| 199 |
|
| 200 |
temp_latent_paths = []
|
| 201 |
overlap_condition_item = None
|
| 202 |
|
| 203 |
try:
|
| 204 |
for i, chunk_prompt in enumerate(prompt_list):
|
| 205 |
-
logging.info(f"
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
|
| 208 |
if overlap_condition_item: current_conditions.append(overlap_condition_item)
|
| 209 |
|
|
@@ -211,9 +225,9 @@ class VideoService:
|
|
| 211 |
prompt=chunk_prompt, num_frames=current_frames, seed=used_seed + i,
|
| 212 |
conditioning_items=current_conditions, **kwargs
|
| 213 |
)
|
| 214 |
-
if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for
|
| 215 |
|
| 216 |
-
if i < num_chunks - 1:
|
| 217 |
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
|
| 218 |
overlap_condition_item = ConditioningItem(media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0)
|
| 219 |
|
|
@@ -223,46 +237,23 @@ class VideoService:
|
|
| 223 |
torch.save(chunk_latents.cpu(), chunk_path)
|
| 224 |
temp_latent_paths.append(chunk_path)
|
| 225 |
|
| 226 |
-
|
|
|
|
| 227 |
except Exception as e:
|
| 228 |
-
logging.error(f"Error during
|
| 229 |
return None, None, None
|
| 230 |
finally:
|
| 231 |
for path in temp_latent_paths:
|
| 232 |
if path.exists(): path.unlink()
|
| 233 |
self.finalize()
|
| 234 |
|
| 235 |
-
@log_function_io
|
| 236 |
-
def generate_single_low(self, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
|
| 237 |
-
"""Orchestrates the generation of a video from a single prompt in one go."""
|
| 238 |
-
logging.info("Starting single-prompt low-res generation...")
|
| 239 |
-
used_seed = self._resolve_seed(kwargs.get("seed"))
|
| 240 |
-
seed_everything(used_seed)
|
| 241 |
-
|
| 242 |
-
try:
|
| 243 |
-
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0), min_frames=9)
|
| 244 |
-
final_latents = self._generate_single_chunk_low(
|
| 245 |
-
num_frames=total_frames, seed=used_seed,
|
| 246 |
-
conditioning_items=kwargs.get("initial_conditions", []), **kwargs
|
| 247 |
-
)
|
| 248 |
-
if final_latents is None: raise RuntimeError("Failed to generate latents.")
|
| 249 |
-
|
| 250 |
-
temp_latent_path = RESULTS_DIR / f"temp_single_{used_seed}.pt"
|
| 251 |
-
torch.save(final_latents.cpu(), temp_latent_path)
|
| 252 |
-
return self._finalize_generation([temp_latent_path], "single_video", used_seed)
|
| 253 |
-
except Exception as e:
|
| 254 |
-
logging.error(f"Error during single generation: {e}", exc_info=True)
|
| 255 |
-
return None, None, None
|
| 256 |
-
finally:
|
| 257 |
-
self.finalize()
|
| 258 |
-
|
| 259 |
# ==========================================================================
|
| 260 |
# --- UNIDADES DE TRABALHO E HELPERS INTERNOS ---
|
| 261 |
# ==========================================================================
|
| 262 |
|
| 263 |
@log_function_io
|
| 264 |
def _generate_single_chunk_low(self, **kwargs) -> Optional[torch.Tensor]:
|
| 265 |
-
"""Calls the pipeline to generate a single chunk of latents."""
|
| 266 |
height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
|
| 267 |
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 268 |
vae_scale_factor = self.pipeline.vae_scale_factor
|
|
@@ -271,7 +262,7 @@ class VideoService:
|
|
| 271 |
|
| 272 |
first_pass_config = self.config.get("first_pass", {}).copy()
|
| 273 |
if kwargs.get("ltx_configs_override"):
|
| 274 |
-
|
| 275 |
|
| 276 |
pipeline_kwargs = {
|
| 277 |
"prompt": kwargs['prompt'], "negative_prompt": kwargs['negative_prompt'],
|
|
@@ -304,40 +295,53 @@ class VideoService:
|
|
| 304 |
|
| 305 |
@log_function_io
|
| 306 |
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
|
|
|
|
| 307 |
if not items_list: return []
|
| 308 |
height_padded, width_padded = self._align(height), self._align(width)
|
| 309 |
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 310 |
|
| 311 |
conditioning_items = []
|
| 312 |
-
for
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
safe_frame = max(0, min(int(frame), num_frames - 1))
|
| 315 |
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 316 |
return conditioning_items
|
| 317 |
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
| 327 |
if preset == "Agressivo":
|
| 328 |
-
|
| 329 |
-
overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
|
| 330 |
elif preset == "Suave":
|
| 331 |
-
|
| 332 |
-
overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
|
| 333 |
elif preset == "Customizado":
|
| 334 |
try:
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
except
|
| 338 |
-
logging.warning(f"Failed to parse custom guidance values: {e}.
|
| 339 |
-
|
| 340 |
-
|
|
|
|
|
|
|
| 341 |
|
| 342 |
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
|
| 343 |
with tempfile.TemporaryDirectory() as temp_dir:
|
|
@@ -361,10 +365,11 @@ class VideoService:
|
|
| 361 |
def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
|
| 362 |
num_frames = int(round(duration_s * DEFAULT_FPS))
|
| 363 |
aligned_frames = self._align(num_frames)
|
| 364 |
-
return max(aligned_frames
|
| 365 |
|
| 366 |
-
def
|
| 367 |
-
|
|
|
|
| 368 |
|
| 369 |
# ==============================================================================
|
| 370 |
# --- INSTANCIAÇÃO SINGLETON ---
|
|
@@ -374,4 +379,4 @@ try:
|
|
| 374 |
logging.info("Global VideoService orchestrator instance created successfully.")
|
| 375 |
except Exception as e:
|
| 376 |
logging.critical(f"Failed to initialize VideoService: {e}", exc_info=True)
|
| 377 |
-
sys.exit(1)
|
|
|
|
| 1 |
# FILE: api/ltx_server_refactored_complete.py
|
| 2 |
+
# DESCRIPTION: Final high-level orchestrator for LTX-Video generation.
|
| 3 |
+
# This version features a unified generation workflow, random seed generation,
|
| 4 |
+
# delegation to specialized modules, and advanced debugging capabilities.
|
| 5 |
|
| 6 |
import gc
|
| 7 |
import json
|
|
|
|
| 13 |
import time
|
| 14 |
from pathlib import Path
|
| 15 |
from typing import Dict, List, Optional, Tuple
|
| 16 |
+
|
| 17 |
import torch
|
| 18 |
import yaml
|
| 19 |
import numpy as np
|
|
|
|
| 24 |
# ==============================================================================
|
| 25 |
|
| 26 |
# Configuração de logging e supressão de warnings
|
|
|
|
| 27 |
import warnings
|
| 28 |
warnings.filterwarnings("ignore")
|
| 29 |
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
|
|
|
|
| 178 |
except Exception: pass
|
| 179 |
|
| 180 |
# ==========================================================================
|
| 181 |
+
# --- LÓGICA DE NEGÓCIO: ORQUESTRADOR PÚBLICO UNIFICADO ---
|
| 182 |
# ==========================================================================
|
| 183 |
|
| 184 |
@log_function_io
|
| 185 |
+
def generate_low_resolution(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
|
| 186 |
+
"""
|
| 187 |
+
[UNIFIED ORCHESTRATOR] Generates a low-resolution video from a prompt.
|
| 188 |
+
Handles both single-line and multi-line prompts transparently.
|
| 189 |
+
"""
|
| 190 |
+
logging.info("Starting unified low-resolution generation (random seed)...")
|
| 191 |
+
used_seed = self._get_random_seed()
|
| 192 |
seed_everything(used_seed)
|
| 193 |
+
logging.info(f"Using randomly generated seed: {used_seed}")
|
| 194 |
|
| 195 |
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
|
| 196 |
if not prompt_list: raise ValueError("Prompt is empty or contains no valid lines.")
|
| 197 |
+
|
| 198 |
+
is_narrative = len(prompt_list) > 1
|
| 199 |
+
logging.info(f"Generation mode detected: {'Narrative' if is_narrative else 'Simple'} ({len(prompt_list)} scene(s)).")
|
| 200 |
|
| 201 |
num_chunks = len(prompt_list)
|
| 202 |
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
|
| 203 |
+
frames_per_chunk = max(FRAMES_ALIGNMENT, (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT)
|
| 204 |
+
overlap_frames = self.config.get("overlap_frames", 8) if is_narrative else 0
|
| 205 |
|
| 206 |
temp_latent_paths = []
|
| 207 |
overlap_condition_item = None
|
| 208 |
|
| 209 |
try:
|
| 210 |
for i, chunk_prompt in enumerate(prompt_list):
|
| 211 |
+
logging.info(f"Processing scene {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
|
| 212 |
+
|
| 213 |
+
if i == num_chunks - 1:
|
| 214 |
+
processed_frames = (num_chunks - 1) * frames_per_chunk
|
| 215 |
+
current_frames = total_frames - processed_frames
|
| 216 |
+
else:
|
| 217 |
+
current_frames = frames_per_chunk
|
| 218 |
+
|
| 219 |
+
if i > 0: current_frames += overlap_frames
|
| 220 |
+
|
| 221 |
current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
|
| 222 |
if overlap_condition_item: current_conditions.append(overlap_condition_item)
|
| 223 |
|
|
|
|
| 225 |
prompt=chunk_prompt, num_frames=current_frames, seed=used_seed + i,
|
| 226 |
conditioning_items=current_conditions, **kwargs
|
| 227 |
)
|
| 228 |
+
if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for scene {i+1}.")
|
| 229 |
|
| 230 |
+
if is_narrative and i < num_chunks - 1:
|
| 231 |
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
|
| 232 |
overlap_condition_item = ConditioningItem(media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0)
|
| 233 |
|
|
|
|
| 237 |
torch.save(chunk_latents.cpu(), chunk_path)
|
| 238 |
temp_latent_paths.append(chunk_path)
|
| 239 |
|
| 240 |
+
base_filename = "narrative_video" if is_narrative else "single_video"
|
| 241 |
+
return self._finalize_generation(temp_latent_paths, base_filename, used_seed)
|
| 242 |
except Exception as e:
|
| 243 |
+
logging.error(f"Error during unified generation: {e}", exc_info=True)
|
| 244 |
return None, None, None
|
| 245 |
finally:
|
| 246 |
for path in temp_latent_paths:
|
| 247 |
if path.exists(): path.unlink()
|
| 248 |
self.finalize()
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
# ==========================================================================
|
| 251 |
# --- UNIDADES DE TRABALHO E HELPERS INTERNOS ---
|
| 252 |
# ==========================================================================
|
| 253 |
|
| 254 |
@log_function_io
|
| 255 |
def _generate_single_chunk_low(self, **kwargs) -> Optional[torch.Tensor]:
|
| 256 |
+
"""[WORKER] Calls the pipeline to generate a single chunk of latents."""
|
| 257 |
height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
|
| 258 |
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 259 |
vae_scale_factor = self.pipeline.vae_scale_factor
|
|
|
|
| 262 |
|
| 263 |
first_pass_config = self.config.get("first_pass", {}).copy()
|
| 264 |
if kwargs.get("ltx_configs_override"):
|
| 265 |
+
self._apply_ui_overrides(first_pass_config, kwargs["ltx_configs_override"])
|
| 266 |
|
| 267 |
pipeline_kwargs = {
|
| 268 |
"prompt": kwargs['prompt'], "negative_prompt": kwargs['negative_prompt'],
|
|
|
|
| 295 |
|
| 296 |
@log_function_io
|
| 297 |
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
|
| 298 |
+
"""[UNIFIED] Prepares ConditioningItems from a mixed list of file paths and tensors."""
|
| 299 |
if not items_list: return []
|
| 300 |
height_padded, width_padded = self._align(height), self._align(width)
|
| 301 |
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 302 |
|
| 303 |
conditioning_items = []
|
| 304 |
+
for media_item, frame, weight in items_list:
|
| 305 |
+
if isinstance(media_item, str):
|
| 306 |
+
tensor = load_image_to_tensor_with_resize_and_crop(media_item, height, width)
|
| 307 |
+
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 308 |
+
tensor = tensor.to(self.main_device, dtype=self.runtime_autocast_dtype)
|
| 309 |
+
elif isinstance(media_item, torch.Tensor):
|
| 310 |
+
tensor = media_item.to(self.main_device, dtype=self.runtime_autocast_dtype)
|
| 311 |
+
else:
|
| 312 |
+
logging.warning(f"Unknown conditioning media type: {type(media_item)}. Skipping.")
|
| 313 |
+
continue
|
| 314 |
+
|
| 315 |
safe_frame = max(0, min(int(frame), num_frames - 1))
|
| 316 |
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 317 |
return conditioning_items
|
| 318 |
|
| 319 |
+
def _apply_ui_overrides(self, config_dict: Dict, overrides: Dict):
|
| 320 |
+
"""Applies advanced settings from the UI to a config dictionary."""
|
| 321 |
+
# Override step counts
|
| 322 |
+
for key in ["num_inference_steps", "skip_initial_inference_steps", "skip_final_inference_steps"]:
|
| 323 |
+
ui_value = overrides.get(key)
|
| 324 |
+
if ui_value and ui_value > 0:
|
| 325 |
+
config_dict[key] = ui_value
|
| 326 |
+
logging.info(f"Override: '{key}' set to {ui_value} by UI.")
|
| 327 |
+
|
| 328 |
+
# Override guidance settings
|
| 329 |
+
preset = overrides.get("guidance_preset", "Padrão (Recomendado)")
|
| 330 |
+
guidance_overrides = {}
|
| 331 |
if preset == "Agressivo":
|
| 332 |
+
guidance_overrides = {"guidance_scale": [1, 2, 8, 12, 8, 2, 1], "stg_scale": [0, 0, 5, 6, 5, 3, 2]}
|
|
|
|
| 333 |
elif preset == "Suave":
|
| 334 |
+
guidance_overrides = {"guidance_scale": [1, 1, 4, 5, 4, 1, 1], "stg_scale": [0, 0, 2, 2, 2, 1, 0]}
|
|
|
|
| 335 |
elif preset == "Customizado":
|
| 336 |
try:
|
| 337 |
+
guidance_overrides["guidance_scale"] = json.loads(overrides["guidance_scale_list"])
|
| 338 |
+
guidance_overrides["stg_scale"] = json.loads(overrides["stg_scale_list"])
|
| 339 |
+
except Exception as e:
|
| 340 |
+
logging.warning(f"Failed to parse custom guidance values: {e}. Using defaults.")
|
| 341 |
+
|
| 342 |
+
if guidance_overrides:
|
| 343 |
+
config_dict.update(guidance_overrides)
|
| 344 |
+
logging.info(f"Applying '{preset}' guidance preset overrides.")
|
| 345 |
|
| 346 |
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
|
| 347 |
with tempfile.TemporaryDirectory() as temp_dir:
|
|
|
|
| 365 |
def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
|
| 366 |
num_frames = int(round(duration_s * DEFAULT_FPS))
|
| 367 |
aligned_frames = self._align(num_frames)
|
| 368 |
+
return max(aligned_frames, min_frames)
|
| 369 |
|
| 370 |
+
def _get_random_seed(self) -> int:
|
| 371 |
+
"""Always generates and returns a new random seed."""
|
| 372 |
+
return random.randint(0, 2**32 - 1)
|
| 373 |
|
| 374 |
# ==============================================================================
|
| 375 |
# --- INSTANCIAÇÃO SINGLETON ---
|
|
|
|
| 379 |
logging.info("Global VideoService orchestrator instance created successfully.")
|
| 380 |
except Exception as e:
|
| 381 |
logging.critical(f"Failed to initialize VideoService: {e}", exc_info=True)
|
| 382 |
+
sys.exit(1)```
|