Spaces:
Paused
Paused
Update api/ltx/ltx_aduc_pipeline.py
Browse files- api/ltx/ltx_aduc_pipeline.py +12 -2
api/ltx/ltx_aduc_pipeline.py
CHANGED
|
@@ -56,6 +56,17 @@ except ImportError as e:
|
|
| 56 |
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
|
| 57 |
# ==============================================================================
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
class LtxAducPipeline:
|
| 60 |
"""
|
| 61 |
Orchestrates the high-level logic of video generation, with internalized
|
|
@@ -72,9 +83,8 @@ class LtxAducPipeline:
|
|
| 72 |
target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
|
| 73 |
logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")
|
| 74 |
|
| 75 |
-
self.config =
|
| 76 |
self._resolve_model_paths_from_cache()
|
| 77 |
-
|
| 78 |
self.pipeline, self.latent_upsampler = build_ltx_pipeline_on_cpu(self.config)
|
| 79 |
|
| 80 |
self.main_device = torch.device("cpu")
|
|
|
|
| 56 |
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
|
| 57 |
# ==============================================================================
|
| 58 |
|
| 59 |
+
class LtxAducPipeline:
|
| 60 |
+
"""
|
| 61 |
+
Orchestrates the high-level logic of video generation, with internalized
|
| 62 |
+
conditioning item preparation.
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Em Test/api/ltx/ltx_aduc_pipeline.py
|
| 67 |
+
|
| 68 |
+
# ... (mantenha os imports e o início do arquivo)
|
| 69 |
+
|
| 70 |
class LtxAducPipeline:
|
| 71 |
"""
|
| 72 |
Orchestrates the high-level logic of video generation, with internalized
|
|
|
|
| 83 |
target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
|
| 84 |
logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")
|
| 85 |
|
| 86 |
+
self.config = self._load_config()
|
| 87 |
self._resolve_model_paths_from_cache()
|
|
|
|
| 88 |
self.pipeline, self.latent_upsampler = build_ltx_pipeline_on_cpu(self.config)
|
| 89 |
|
| 90 |
self.main_device = torch.device("cpu")
|