eeuuia commited on
Commit
9ae4c2d
·
verified ·
1 Parent(s): e9d1b13

Update api/ltx_server_refactored_complete.py

Browse files
api/ltx_server_refactored_complete.py CHANGED
@@ -283,6 +283,14 @@ class VideoService:
283
  downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
284
  downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
285
 
 
 
 
 
 
 
 
 
286
  # 1. Começa com a configuração padrão
287
  first_pass_config = self.config.get("first_pass", {}).copy()
288
 
@@ -351,6 +359,39 @@ class VideoService:
351
  video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
352
  return str(video_path), str(final_latents_path), seed
353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354
  @log_function_io
355
  def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
356
  """[UNIFIED] Prepares ConditioningItems from a mixed list of file paths and tensors."""
 
283
  downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
284
  downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
285
 
286
+ for item in original_conditioning_items:
287
+ moved_tensor = item.media_item.to(self.main_device, dtype=self.runtime_autocast_dtype)
288
+ processed_conditioning_items.append(ConditioningItem(
289
+ media_item=moved_tensor,
290
+ media_frame_number=item.media_frame_number,
291
+ conditioning_strength=item.conditioning_strength
292
+ ))
293
+
294
  # 1. Começa com a configuração padrão
295
  first_pass_config = self.config.get("first_pass", {}).copy()
296
 
 
359
  video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
360
  return str(video_path), str(final_latents_path), seed
361
 
362
+
363
+
364
+ @log_function_io
365
+ def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[Condition-ingItem]:
366
+ """
367
+ [CORRIGIDO] Prepara ConditioningItems, mas mantém os tensores na CPU.
368
+ O movimento para a GPU será tratado posteriormente.
369
+ """
370
+ if not items_list: return []
371
+ height_padded, width_padded = self._align(height), self._align(width)
372
+ padding_values = calculate_padding(height, width, height_padded, width_padded)
373
+
374
+ conditioning_items = []
375
+ for media_item, frame, weight in items_list:
376
+ if isinstance(media_item, str):
377
+ # Carrega a imagem e aplica padding, mas mantém na CPU.
378
+ tensor = load_image_to_tensor_with_resize_and_crop(media_item, height, width)
379
+ tensor = torch.nn.functional.pad(tensor, padding_values)
380
+ # O tensor permanece na CPU aqui.
381
+ elif isinstance(media_item, torch.Tensor):
382
+ # Se for um tensor (como o de overlap), apenas garante que está na CPU.
383
+ tensor = media_item.cpu()
384
+ else:
385
+ logging.warning(f"Unknown conditioning media type: {type(media_item)}. Skipping.")
386
+ continue
387
+
388
+ safe_frame = max(0, min(int(frame), num_frames - 1))
389
+ conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
390
+
391
+ self._log_conditioning_items(conditioning_items)
392
+ return conditioning_items
393
+
394
+
395
  @log_function_io
396
  def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
397
  """[UNIFIED] Prepares ConditioningItems from a mixed list of file paths and tensors."""