Spaces:
Paused
Paused
Update api/ltx/ltx_utils.py
Browse files- api/ltx/ltx_utils.py +177 -0
api/ltx/ltx_utils.py
CHANGED
|
@@ -10,6 +10,8 @@ import logging
|
|
| 10 |
import sys
|
| 11 |
from pathlib import Path
|
| 12 |
from typing import Dict, Tuple
|
|
|
|
|
|
|
| 13 |
|
| 14 |
import torch
|
| 15 |
from safetensors import safe_open
|
|
@@ -114,6 +116,181 @@ def build_complete_pipeline_on_cpu(checkpoint_path: str, config: Dict) -> LTXVid
|
|
| 114 |
# --- FUNÇÕES AUXILIARES GENÉRICAS ---
|
| 115 |
# ==============================================================================
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
def seed_everything(seed: int):
|
| 118 |
"""
|
| 119 |
Define a semente para PyTorch, NumPy e Python para garantir reprodutibilidade.
|
|
|
|
| 10 |
import sys
|
| 11 |
from pathlib import Path
|
| 12 |
from typing import Dict, Tuple
|
| 13 |
+
import torchvision.transforms.functional as TVF
|
| 14 |
+
from PIL import Image
|
| 15 |
|
| 16 |
import torch
|
| 17 |
from safetensors import safe_open
|
|
|
|
| 116 |
# --- FUNÇÕES AUXILIARES GENÉRICAS ---
|
| 117 |
# ==============================================================================
|
| 118 |
|
| 119 |
+
|
| 120 |
+
# # FILE: api/ltx/ltx_utils.py
|
| 121 |
+
# DESCRIPTION: A pure utility library for the LTX ecosystem.
|
| 122 |
+
# Contains the official low-level builder function for the complete pipeline
|
| 123 |
+
# and other stateless helper functions.
|
| 124 |
+
|
| 125 |
+
import os
|
| 126 |
+
import random
|
| 127 |
+
import json
|
| 128 |
+
import logging
|
| 129 |
+
import sys
|
| 130 |
+
from pathlib import Path
|
| 131 |
+
from typing import Dict, Tuple
|
| 132 |
+
|
| 133 |
+
import torch
|
| 134 |
+
from safetensors import safe_open
|
| 135 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
| 136 |
+
|
| 137 |
+
# ==============================================================================
|
| 138 |
+
# --- CONFIGURAÇÃO DE PATH E IMPORTS DA BIBLIOTECA LTX ---
|
| 139 |
+
# ==============================================================================
|
| 140 |
+
|
| 141 |
+
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 142 |
+
|
| 143 |
+
def add_deps_to_path():
|
| 144 |
+
"""Adiciona o diretório do repositório LTX ao sys.path para importação de suas bibliotecas."""
|
| 145 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 146 |
+
if repo_path not in sys.path:
|
| 147 |
+
sys.path.insert(0, repo_path)
|
| 148 |
+
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 149 |
+
|
| 150 |
+
add_deps_to_path()
|
| 151 |
+
|
| 152 |
+
try:
|
| 153 |
+
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 154 |
+
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 155 |
+
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 156 |
+
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 157 |
+
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 158 |
+
except ImportError as e:
|
| 159 |
+
logging.critical("Failed to import a core LTX-Video library component.", exc_info=True)
|
| 160 |
+
raise ImportError(f"Could not import from LTX-Video library. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
|
| 161 |
+
|
| 162 |
+
# ==============================================================================
|
| 163 |
+
# --- FUNÇÃO HELPER 'create_transformer' (Essencial) ---
|
| 164 |
+
# ==============================================================================
|
| 165 |
+
|
| 166 |
+
def create_transformer(ckpt_path: str, precision: str) -> Transformer3DModel:
|
| 167 |
+
"""
|
| 168 |
+
Cria e carrega o modelo Transformer3D com a lógica de precisão correta,
|
| 169 |
+
incluindo suporte para a otimização float8_e4m3fn.
|
| 170 |
+
"""
|
| 171 |
+
if precision == "float8_e4m3fn":
|
| 172 |
+
try:
|
| 173 |
+
from q8_kernels.integration.patch_transformer import patch_diffusers_transformer as patch_transformer_for_q8_kernels
|
| 174 |
+
transformer = Transformer3DModel.from_pretrained(ckpt_path, dtype=torch.float8_e4m3fn)
|
| 175 |
+
patch_transformer_for_q8_kernels(transformer)
|
| 176 |
+
return transformer
|
| 177 |
+
except ImportError:
|
| 178 |
+
raise ValueError("Q8-Kernels not found. To use FP8 checkpoint, please install Q8 kernels from the project's wheels.")
|
| 179 |
+
elif precision == "bfloat16":
|
| 180 |
+
return Transformer3DModel.from_pretrained(ckpt_path).to(torch.bfloat16)
|
| 181 |
+
else:
|
| 182 |
+
return Transformer3DModel.from_pretrained(ckpt_path)
|
| 183 |
+
|
| 184 |
+
# ==============================================================================
|
| 185 |
+
# --- BUILDER DE BAIXO NÍVEL OFICIAL ---
|
| 186 |
+
# ==============================================================================
|
| 187 |
+
|
| 188 |
+
def build_complete_pipeline_on_cpu(checkpoint_path: str, config: Dict) -> LTXVideoPipeline:
|
| 189 |
+
"""
|
| 190 |
+
Constrói o pipeline LTX COMPLETO, incluindo o VAE, e o mantém na CPU.
|
| 191 |
+
Esta é a função de construção fundamental usada pelo LTXAducManager.
|
| 192 |
+
"""
|
| 193 |
+
logging.info(f"Building complete LTX pipeline from checkpoint: {Path(checkpoint_path).name}")
|
| 194 |
+
|
| 195 |
+
with safe_open(checkpoint_path, framework="pt") as f:
|
| 196 |
+
metadata = f.metadata() or {}
|
| 197 |
+
config_str = metadata.get("config", "{}")
|
| 198 |
+
allowed_inference_steps = json.loads(config_str).get("allowed_inference_steps")
|
| 199 |
+
|
| 200 |
+
precision = config.get("precision", "bfloat16")
|
| 201 |
+
|
| 202 |
+
# Usa a função helper correta para criar o transformer
|
| 203 |
+
transformer = create_transformer(checkpoint_path, precision).to("cpu")
|
| 204 |
+
|
| 205 |
+
scheduler = RectifiedFlowScheduler.from_pretrained(checkpoint_path)
|
| 206 |
+
text_encoder = T5EncoderModel.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="text_encoder").to("cpu")
|
| 207 |
+
tokenizer = T5Tokenizer.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="tokenizer")
|
| 208 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
| 209 |
+
vae = CausalVideoAutoencoder.from_pretrained(checkpoint_path).to("cpu")
|
| 210 |
+
|
| 211 |
+
if precision == "bfloat16":
|
| 212 |
+
text_encoder.to(torch.bfloat16)
|
| 213 |
+
vae.to(torch.bfloat16)
|
| 214 |
+
# O transformer já foi convertido para bfloat16 dentro de create_transformer, se aplicável
|
| 215 |
+
|
| 216 |
+
pipeline = LTXVideoPipeline(
|
| 217 |
+
transformer=transformer,
|
| 218 |
+
patchifier=patchifier,
|
| 219 |
+
text_encoder=text_encoder,
|
| 220 |
+
tokenizer=tokenizer,
|
| 221 |
+
scheduler=scheduler,
|
| 222 |
+
vae=vae, # VAE é incluído para que o pipeline possa ser auto-suficiente
|
| 223 |
+
allowed_inference_steps=allowed_inference_steps,
|
| 224 |
+
prompt_enhancer_image_caption_model=None,
|
| 225 |
+
prompt_enhancer_image_caption_processor=None,
|
| 226 |
+
prompt_enhancer_llm_model=None,
|
| 227 |
+
prompt_enhancer_llm_tokenizer=None,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
return pipeline
|
| 231 |
+
|
| 232 |
+
# ==============================================================================
|
| 233 |
+
# --- FUNÇÕES AUXILIARES GENÉRICAS ---
|
| 234 |
+
# ==============================================================================
|
| 235 |
+
|
| 236 |
+
def seed_everything(seed: int):
|
| 237 |
+
"""
|
| 238 |
+
Define a semente para PyTorch, NumPy e Python para garantir reprodutibilidade.
|
| 239 |
+
"""
|
| 240 |
+
random.seed(seed)
|
| 241 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 242 |
+
np.random.seed(seed)
|
| 243 |
+
torch.manual_seed(seed)
|
| 244 |
+
torch.cuda.manual_seed_all(seed)
|
| 245 |
+
torch.backends.cudnn.deterministic = True
|
| 246 |
+
torch.backends.cudnn.benchmark = Fals
|
| 247 |
+
|
| 248 |
+
def load_image_to_tensor_with_resize_and_crop(
|
| 249 |
+
image_input: Union[str, Image.Image],
|
| 250 |
+
target_height: int,
|
| 251 |
+
target_width: int,
|
| 252 |
+
) -> torch.Tensor:
|
| 253 |
+
"""
|
| 254 |
+
Carrega, redimensiona, corta e processa uma imagem para um tensor de pixel 5D,
|
| 255 |
+
normalizado para [-1, 1], pronto para ser enviado ao VAE para encoding.
|
| 256 |
+
"""
|
| 257 |
+
if isinstance(image_input, str):
|
| 258 |
+
image = Image.open(image_input).convert("RGB")
|
| 259 |
+
elif isinstance(image_input, Image.Image):
|
| 260 |
+
image = image_input.convert("RGB")
|
| 261 |
+
else:
|
| 262 |
+
raise ValueError("image_input must be a file path or a PIL Image object")
|
| 263 |
+
|
| 264 |
+
input_width, input_height = image.size
|
| 265 |
+
aspect_ratio_target = target_width / target_height
|
| 266 |
+
aspect_ratio_frame = input_width / input_height
|
| 267 |
+
|
| 268 |
+
if aspect_ratio_frame > aspect_ratio_target:
|
| 269 |
+
new_width, new_height = int(input_height * aspect_ratio_target), input_height
|
| 270 |
+
x_start = (input_width - new_width) // 2
|
| 271 |
+
image = image.crop((x_start, 0, x_start + new_width, new_height))
|
| 272 |
+
else:
|
| 273 |
+
new_height = int(input_width / aspect_ratio_target)
|
| 274 |
+
y_start = (input_height - new_height) // 2
|
| 275 |
+
image = image.crop((0, y_start, input_width, y_start + new_height))
|
| 276 |
+
|
| 277 |
+
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
|
| 278 |
+
|
| 279 |
+
frame_tensor = TVF.to_tensor(image)
|
| 280 |
+
|
| 281 |
+
# Esta parte depende de 'crf_compressor', então precisamos importá-lo aqui também
|
| 282 |
+
try:
|
| 283 |
+
from ltx_video.pipelines import crf_compressor
|
| 284 |
+
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
|
| 285 |
+
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
|
| 286 |
+
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
|
| 287 |
+
except ImportError:
|
| 288 |
+
logging.warning("CRF Compressor not found. Skipping compression step.")
|
| 289 |
+
|
| 290 |
+
frame_tensor = (frame_tensor * 2.0) - 1.0
|
| 291 |
+
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
def seed_everything(seed: int):
|
| 295 |
"""
|
| 296 |
Define a semente para PyTorch, NumPy e Python para garantir reprodutibilidade.
|