Spaces:
Paused
Paused
Upload 4 files
Browse files- api/ltx/ltx_aduc_manager.py +7 -28
- api/ltx/ltx_aduc_pipeline.py +19 -26
- api/ltx/ltx_utils.py +4 -20
- api/ltx/vae_aduc_pipeline.py +10 -13
api/ltx/ltx_aduc_manager.py
CHANGED
|
@@ -27,24 +27,12 @@ LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
| 27 |
LTX_REPO_ID = "Lightricks/LTX-Video"
|
| 28 |
CACHE_DIR = os.environ.get("HF_HOME")
|
| 29 |
|
| 30 |
-
|
| 31 |
-
def add_deps_to_path():
|
| 32 |
-
"""
|
| 33 |
-
Adiciona o diretório do repositório LTX ao sys.path para garantir que suas
|
| 34 |
-
bibliotecas possam ser importadas.
|
| 35 |
-
"""
|
| 36 |
-
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 37 |
-
if repo_path not in sys.path:
|
| 38 |
-
sys.path.insert(0, repo_path)
|
| 39 |
-
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 40 |
-
|
| 41 |
-
# Executa a função imediatamente para configurar o ambiente antes de qualquer importação.
|
| 42 |
-
add_deps_to_path()
|
| 43 |
-
|
| 44 |
# --- Importações da biblioteca LTX-Video ---
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
# ==============================================================================
|
| 50 |
# --- DEFINIÇÃO DOS DATACLASSES DE CONDICIONAMENTO ADUC-SDR ---
|
|
@@ -142,22 +130,19 @@ class LTXWorker:
|
|
| 142 |
self.vae_device = torch.device(vae_device_str)
|
| 143 |
self.config = config
|
| 144 |
self.pipeline: LTXVideoPipeline = None
|
| 145 |
-
|
| 146 |
self._load_and_patch_pipeline()
|
| 147 |
|
| 148 |
def _load_and_patch_pipeline(self):
|
| 149 |
logging.info(f"[LTXWorker-{self.main_device}] Carregando pipeline LTX para a CPU...")
|
| 150 |
self.pipeline, _ = build_ltx_pipeline_on_cpu(self.config)
|
| 151 |
-
|
| 152 |
logging.info(f"[LTXWorker-{self.main_device}] Movendo pipeline para GPUs (Main: {self.main_device}, VAE: {self.vae_device})...")
|
| 153 |
self.pipeline.to(self.main_device)
|
| 154 |
self.pipeline.vae.to(self.vae_device)
|
| 155 |
-
|
| 156 |
logging.info(f"[LTXWorker-{self.main_device}] Aplicando patch ADUC-SDR na função 'prepare_conditioning'...")
|
| 157 |
self.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(self.pipeline, LTXVideoPipeline)
|
| 158 |
logging.info(f"[LTXWorker-{self.main_device}] ✅ Pipeline 'quente', corrigido e pronto para uso.")
|
| 159 |
|
| 160 |
-
class
|
| 161 |
_instance = None
|
| 162 |
_lock = threading.Lock()
|
| 163 |
|
|
@@ -172,15 +157,11 @@ class LTXPoolManager:
|
|
| 172 |
if self._initialized: return
|
| 173 |
with self._lock:
|
| 174 |
if self._initialized: return
|
| 175 |
-
|
| 176 |
logging.info("⚙️ Inicializando LTXPoolManager Singleton...")
|
| 177 |
self.config = self._load_config()
|
| 178 |
-
|
| 179 |
main_device_str = str(gpu_manager.get_ltx_device())
|
| 180 |
vae_device_str = str(gpu_manager.get_ltx_vae_device())
|
| 181 |
-
|
| 182 |
self.worker = LTXWorker(main_device_str, vae_device_str, self.config)
|
| 183 |
-
|
| 184 |
self._initialized = True
|
| 185 |
logging.info("✅ LTXPoolManager pronto.")
|
| 186 |
|
|
@@ -190,11 +171,9 @@ class LTXPoolManager:
|
|
| 190 |
with open(config_path, "r") as file:
|
| 191 |
return yaml.safe_load(file)
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
def get_pipeline(self) -> LTXVideoPipeline:
|
| 196 |
"""Retorna a instância do pipeline, já carregada e corrigida."""
|
| 197 |
return self.worker.pipeline
|
| 198 |
|
| 199 |
# --- Instância Singleton Global ---
|
| 200 |
-
|
|
|
|
| 27 |
LTX_REPO_ID = "Lightricks/LTX-Video"
|
| 28 |
CACHE_DIR = os.environ.get("HF_HOME")
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# --- Importações da biblioteca LTX-Video ---
|
| 31 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 32 |
+
if repo_path not in sys.path:
|
| 33 |
+
sys.path.insert(0, repo_path)
|
| 34 |
+
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 35 |
+
from ltx_video.models.autoencoders.vae_encode import vae_encode, latent_to_pixel_coords
|
| 36 |
|
| 37 |
# ==============================================================================
|
| 38 |
# --- DEFINIÇÃO DOS DATACLASSES DE CONDICIONAMENTO ADUC-SDR ---
|
|
|
|
| 130 |
self.vae_device = torch.device(vae_device_str)
|
| 131 |
self.config = config
|
| 132 |
self.pipeline: LTXVideoPipeline = None
|
|
|
|
| 133 |
self._load_and_patch_pipeline()
|
| 134 |
|
| 135 |
def _load_and_patch_pipeline(self):
|
| 136 |
logging.info(f"[LTXWorker-{self.main_device}] Carregando pipeline LTX para a CPU...")
|
| 137 |
self.pipeline, _ = build_ltx_pipeline_on_cpu(self.config)
|
|
|
|
| 138 |
logging.info(f"[LTXWorker-{self.main_device}] Movendo pipeline para GPUs (Main: {self.main_device}, VAE: {self.vae_device})...")
|
| 139 |
self.pipeline.to(self.main_device)
|
| 140 |
self.pipeline.vae.to(self.vae_device)
|
|
|
|
| 141 |
logging.info(f"[LTXWorker-{self.main_device}] Aplicando patch ADUC-SDR na função 'prepare_conditioning'...")
|
| 142 |
self.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(self.pipeline, LTXVideoPipeline)
|
| 143 |
logging.info(f"[LTXWorker-{self.main_device}] ✅ Pipeline 'quente', corrigido e pronto para uso.")
|
| 144 |
|
| 145 |
+
class LtxAducManager:
|
| 146 |
_instance = None
|
| 147 |
_lock = threading.Lock()
|
| 148 |
|
|
|
|
| 157 |
if self._initialized: return
|
| 158 |
with self._lock:
|
| 159 |
if self._initialized: return
|
|
|
|
| 160 |
logging.info("⚙️ Inicializando LTXPoolManager Singleton...")
|
| 161 |
self.config = self._load_config()
|
|
|
|
| 162 |
main_device_str = str(gpu_manager.get_ltx_device())
|
| 163 |
vae_device_str = str(gpu_manager.get_ltx_vae_device())
|
|
|
|
| 164 |
self.worker = LTXWorker(main_device_str, vae_device_str, self.config)
|
|
|
|
| 165 |
self._initialized = True
|
| 166 |
logging.info("✅ LTXPoolManager pronto.")
|
| 167 |
|
|
|
|
| 171 |
with open(config_path, "r") as file:
|
| 172 |
return yaml.safe_load(file)
|
| 173 |
|
|
|
|
|
|
|
| 174 |
def get_pipeline(self) -> LTXVideoPipeline:
|
| 175 |
"""Retorna a instância do pipeline, já carregada e corrigida."""
|
| 176 |
return self.worker.pipeline
|
| 177 |
|
| 178 |
# --- Instância Singleton Global ---
|
| 179 |
+
ltx_aduc_manager = LtxAducManager()
|
api/ltx/ltx_aduc_pipeline.py
CHANGED
|
@@ -18,6 +18,13 @@ import torch
|
|
| 18 |
import yaml
|
| 19 |
import numpy as np
|
| 20 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# ==============================================================================
|
| 23 |
# --- SETUP E IMPORTAÇÕES DO PROJETO ---
|
|
@@ -27,7 +34,7 @@ from PIL import Image
|
|
| 27 |
import warnings
|
| 28 |
warnings.filterwarnings("ignore")
|
| 29 |
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
|
| 30 |
-
log_level =
|
| 31 |
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')
|
| 32 |
|
| 33 |
# --- Constantes de Configuração ---
|
|
@@ -37,29 +44,16 @@ RESULTS_DIR = Path("/app/output")
|
|
| 37 |
DEFAULT_FPS = 24.0
|
| 38 |
FRAMES_ALIGNMENT = 8
|
| 39 |
|
| 40 |
-
from api.ltx.ltx_utils import seed_everything
|
| 41 |
-
from utils.debug_utils import log_function_io
|
| 42 |
-
|
| 43 |
-
|
| 44 |
# Garante que a biblioteca LTX-Video seja importável
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
sys.path.insert(0, repo_path)
|
| 49 |
-
add_deps_to_path()
|
| 50 |
-
|
| 51 |
-
# --- Módulos da nossa Arquitetura ---
|
| 52 |
-
from managers.gpu_manager import gpu_manager
|
| 53 |
-
from api.ltx.ltx_aduc_manager import ltx_pool_manager, LatentConditioningItem
|
| 54 |
-
from api.ltx.vae_aduc_pipeline import vae_server_singleton
|
| 55 |
-
from tools.video_encode_tool import video_encode_tool_singleton
|
| 56 |
-
|
| 57 |
|
| 58 |
# ==============================================================================
|
| 59 |
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
|
| 60 |
# ==============================================================================
|
| 61 |
|
| 62 |
-
class
|
| 63 |
"""
|
| 64 |
Orchestrates the high-level logic of video generation, delegating all
|
| 65 |
low-level tasks to specialized managers and utility modules.
|
|
@@ -70,13 +64,13 @@ class VideoService:
|
|
| 70 |
t0 = time.time()
|
| 71 |
logging.info("Initializing VideoService Orchestrator...")
|
| 72 |
|
| 73 |
-
if
|
| 74 |
raise RuntimeError("A required manager (LTX or VAE) failed to initialize. Aborting.")
|
| 75 |
|
| 76 |
-
self.pipeline =
|
| 77 |
self.main_device = self.pipeline.device
|
| 78 |
self.vae_device = self.pipeline.vae.device
|
| 79 |
-
self.config =
|
| 80 |
|
| 81 |
self._apply_precision_policy()
|
| 82 |
logging.info(f"VideoService ready. Using Main: {self.main_device}, VAE: {self.vae_device}. Startup time: {time.time() - t0:.2f}s")
|
|
@@ -121,7 +115,7 @@ class VideoService:
|
|
| 121 |
initial_conditions = []
|
| 122 |
if initial_media_items:
|
| 123 |
logging.info("Delegating to VaeServer to prepare initial conditioning items...")
|
| 124 |
-
initial_conditions =
|
| 125 |
media_items=[item[0] for item in initial_media_items],
|
| 126 |
target_frames=[item[1] for item in initial_media_items],
|
| 127 |
strengths=[item[2] for item in initial_media_items],
|
|
@@ -278,7 +272,7 @@ class VideoService:
|
|
| 278 |
torch.save(final_latents, final_latents_path)
|
| 279 |
logging.info(f"Final latents saved to: {final_latents_path}")
|
| 280 |
|
| 281 |
-
pixel_tensor =
|
| 282 |
final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))
|
| 283 |
)
|
| 284 |
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
|
|
@@ -293,7 +287,6 @@ class VideoService:
|
|
| 293 |
config_dict[key] = ui_value
|
| 294 |
logging.info(f"Override: '{key}' set to {ui_value} by UI.")
|
| 295 |
|
| 296 |
-
|
| 297 |
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
|
| 298 |
with tempfile.TemporaryDirectory() as temp_dir:
|
| 299 |
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
|
|
@@ -326,5 +319,5 @@ class VideoService:
|
|
| 326 |
# ==============================================================================
|
| 327 |
# --- INSTANCIAÇÃO SINGLETON ---
|
| 328 |
# ==============================================================================
|
| 329 |
-
|
| 330 |
-
logging.info("Global VideoService orchestrator instance created successfully.")
|
|
|
|
| 18 |
import yaml
|
| 19 |
import numpy as np
|
| 20 |
from PIL import Image
|
| 21 |
+
from api.ltx.ltx_utils import seed_everything
|
| 22 |
+
from utils.debug_utils import log_function_io
|
| 23 |
+
from managers.gpu_manager import gpu_manager
|
| 24 |
+
from api.ltx.ltx_aduc_manager import ltx_aduc_manager, LatentConditioningItem
|
| 25 |
+
from api.ltx.vae_aduc_pipeline import vae_aduc_pipeline
|
| 26 |
+
from tools.video_encode_tool import video_encode_tool_singleton
|
| 27 |
+
|
| 28 |
|
| 29 |
# ==============================================================================
|
| 30 |
# --- SETUP E IMPORTAÇÕES DO PROJETO ---
|
|
|
|
| 34 |
import warnings
|
| 35 |
warnings.filterwarnings("ignore")
|
| 36 |
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
|
| 37 |
+
log_level = logging.DEBUG
|
| 38 |
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')
|
| 39 |
|
| 40 |
# --- Constantes de Configuração ---
|
|
|
|
| 44 |
DEFAULT_FPS = 24.0
|
| 45 |
FRAMES_ALIGNMENT = 8
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Garante que a biblioteca LTX-Video seja importável
|
| 48 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 49 |
+
if repo_path not in sys.path:
|
| 50 |
+
sys.path.insert(0, repo_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# ==============================================================================
|
| 53 |
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
|
| 54 |
# ==============================================================================
|
| 55 |
|
| 56 |
+
class LtxAducPipeline:
|
| 57 |
"""
|
| 58 |
Orchestrates the high-level logic of video generation, delegating all
|
| 59 |
low-level tasks to specialized managers and utility modules.
|
|
|
|
| 64 |
t0 = time.time()
|
| 65 |
logging.info("Initializing VideoService Orchestrator...")
|
| 66 |
|
| 67 |
+
if ltx_aduc_manager is None or vae_aduc_pipeline is None:
|
| 68 |
raise RuntimeError("A required manager (LTX or VAE) failed to initialize. Aborting.")
|
| 69 |
|
| 70 |
+
self.pipeline = ltx_aduc_manager.get_pipeline()
|
| 71 |
self.main_device = self.pipeline.device
|
| 72 |
self.vae_device = self.pipeline.vae.device
|
| 73 |
+
self.config = ltx_aduc_manager.config
|
| 74 |
|
| 75 |
self._apply_precision_policy()
|
| 76 |
logging.info(f"VideoService ready. Using Main: {self.main_device}, VAE: {self.vae_device}. Startup time: {time.time() - t0:.2f}s")
|
|
|
|
| 115 |
initial_conditions = []
|
| 116 |
if initial_media_items:
|
| 117 |
logging.info("Delegating to VaeServer to prepare initial conditioning items...")
|
| 118 |
+
initial_conditions = vae_aduc_pipeline.generate_conditioning_items(
|
| 119 |
media_items=[item[0] for item in initial_media_items],
|
| 120 |
target_frames=[item[1] for item in initial_media_items],
|
| 121 |
strengths=[item[2] for item in initial_media_items],
|
|
|
|
| 272 |
torch.save(final_latents, final_latents_path)
|
| 273 |
logging.info(f"Final latents saved to: {final_latents_path}")
|
| 274 |
|
| 275 |
+
pixel_tensor = vae_aduc_pipeline.decode_to_pixels(
|
| 276 |
final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))
|
| 277 |
)
|
| 278 |
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
|
|
|
|
| 287 |
config_dict[key] = ui_value
|
| 288 |
logging.info(f"Override: '{key}' set to {ui_value} by UI.")
|
| 289 |
|
|
|
|
| 290 |
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
|
| 291 |
with tempfile.TemporaryDirectory() as temp_dir:
|
| 292 |
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
|
|
|
|
| 319 |
# ==============================================================================
|
| 320 |
# --- INSTANCIAÇÃO SINGLETON ---
|
| 321 |
# ==============================================================================
|
| 322 |
+
ltx_aduc_pipeline = LtxAducPipeline()
|
| 323 |
+
logging.info("Global VideoService orchestrator instance created successfully.")
|
api/ltx/ltx_utils.py
CHANGED
|
@@ -11,7 +11,6 @@ import sys
|
|
| 11 |
from pathlib import Path
|
| 12 |
from typing import Dict, Optional, Tuple, Union
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
-
|
| 15 |
import numpy as np
|
| 16 |
import torch
|
| 17 |
import torchvision.transforms.functional as TVF
|
|
@@ -28,24 +27,13 @@ LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
| 28 |
LTX_REPO_ID = "Lightricks/LTX-Video"
|
| 29 |
CACHE_DIR = os.environ.get("HF_HOME")
|
| 30 |
|
| 31 |
-
def add_deps_to_path():
|
| 32 |
-
"""
|
| 33 |
-
Adiciona o diretório do repositório LTX ao sys.path para garantir que suas
|
| 34 |
-
bibliotecas possam ser importadas.
|
| 35 |
-
"""
|
| 36 |
-
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 37 |
-
if repo_path not in sys.path:
|
| 38 |
-
sys.path.insert(0, repo_path)
|
| 39 |
-
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 40 |
-
|
| 41 |
-
# Executa a função imediatamente para configurar o ambiente antes de qualquer importação.
|
| 42 |
-
add_deps_to_path()
|
| 43 |
-
|
| 44 |
-
|
| 45 |
# ==============================================================================
|
| 46 |
# --- IMPORTAÇÕES DA BIBLIOTECA LTX-VIDEO (Após configuração do path) ---
|
| 47 |
# ==============================================================================
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 50 |
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
|
| 51 |
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
|
@@ -53,9 +41,6 @@ try:
|
|
| 53 |
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 54 |
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 55 |
import ltx_video.pipelines.crf_compressor as crf_compressor
|
| 56 |
-
except ImportError as e:
|
| 57 |
-
raise ImportError(f"Could not import from LTX-Video library even after setting sys.path. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
|
| 58 |
-
|
| 59 |
|
| 60 |
# ==============================================================================
|
| 61 |
# --- FUNÇÕES DE CONSTRUÇÃO DE MODELO E PIPELINE ---
|
|
@@ -121,7 +106,6 @@ def build_ltx_pipeline_on_cpu(config: Dict) -> Tuple[LTXVideoPipeline, Optional[
|
|
| 121 |
logging.info(f"LTX pipeline built on CPU in {time.perf_counter() - t0:.2f}s")
|
| 122 |
return pipeline, latent_upsampler
|
| 123 |
|
| 124 |
-
|
| 125 |
# ==============================================================================
|
| 126 |
# --- FUNÇÕES AUXILIARES (Seed, Preparação de Imagem) ---
|
| 127 |
# ==============================================================================
|
|
|
|
| 11 |
from pathlib import Path
|
| 12 |
from typing import Dict, Optional, Tuple, Union
|
| 13 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 14 |
import numpy as np
|
| 15 |
import torch
|
| 16 |
import torchvision.transforms.functional as TVF
|
|
|
|
| 27 |
LTX_REPO_ID = "Lightricks/LTX-Video"
|
| 28 |
CACHE_DIR = os.environ.get("HF_HOME")
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# ==============================================================================
|
| 31 |
# --- IMPORTAÇÕES DA BIBLIOTECA LTX-VIDEO (Após configuração do path) ---
|
| 32 |
# ==============================================================================
|
| 33 |
+
|
| 34 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 35 |
+
if repo_path not in sys.path:
|
| 36 |
+
sys.path.insert(0, repo_path)
|
| 37 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 38 |
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
|
| 39 |
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
|
|
|
| 41 |
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 42 |
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 43 |
import ltx_video.pipelines.crf_compressor as crf_compressor
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# ==============================================================================
|
| 46 |
# --- FUNÇÕES DE CONSTRUÇÃO DE MODELO E PIPELINE ---
|
|
|
|
| 106 |
logging.info(f"LTX pipeline built on CPU in {time.perf_counter() - t0:.2f}s")
|
| 107 |
return pipeline, latent_upsampler
|
| 108 |
|
|
|
|
| 109 |
# ==============================================================================
|
| 110 |
# --- FUNÇÕES AUXILIARES (Seed, Preparação de Imagem) ---
|
| 111 |
# ==============================================================================
|
api/ltx/vae_aduc_pipeline.py
CHANGED
|
@@ -14,28 +14,26 @@ import yaml
|
|
| 14 |
import torch
|
| 15 |
import numpy as np
|
| 16 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# ==============================================================================
|
| 19 |
# --- IMPORTAÇÕES DA ARQUITETURA E DO LTX ---
|
| 20 |
# ==============================================================================
|
| 21 |
-
from api.ltx.ltx_aduc_manager import LatentConditioningItem
|
| 22 |
-
from managers.gpu_manager import gpu_manager
|
| 23 |
-
from api.ltx.ltx_aduc_manager import ltx_pool_manager
|
| 24 |
|
| 25 |
# Adiciona o path para as bibliotecas do LTX
|
| 26 |
-
|
| 27 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 28 |
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 29 |
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
|
| 30 |
-
|
| 31 |
-
from ltx_video.models.autoencoders.
|
| 32 |
-
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
| 33 |
|
| 34 |
# ==============================================================================
|
| 35 |
# --- CLASSE DO SERVIÇO VAE ---
|
| 36 |
# ==============================================================================
|
| 37 |
|
| 38 |
-
class
|
| 39 |
_instance = None
|
| 40 |
_lock = threading.Lock()
|
| 41 |
|
|
@@ -60,10 +58,10 @@ class VaeServer:
|
|
| 60 |
# 2. Obter o modelo VAE já carregado pelo LTXPoolManager
|
| 61 |
# Isso garante consistência e evita carregar o modelo duas vezes.
|
| 62 |
try:
|
| 63 |
-
from api.ltx.ltx_aduc_manager import
|
| 64 |
-
if
|
| 65 |
raise RuntimeError("LTXPoolManager is not initialized yet. VaeServer must be initialized after.")
|
| 66 |
-
self.vae =
|
| 67 |
except Exception as e:
|
| 68 |
logging.critical(f"Failed to get VAE from LTXPoolManager. Error: {e}", exc_info=True)
|
| 69 |
raise
|
|
@@ -150,5 +148,4 @@ class VaeServer:
|
|
| 150 |
finally:
|
| 151 |
self._cleanup_gpu()
|
| 152 |
|
| 153 |
-
|
| 154 |
-
vae_server_singleton = VaeServer()
|
|
|
|
| 14 |
import torch
|
| 15 |
import numpy as np
|
| 16 |
from PIL import Image
|
| 17 |
+
from api.ltx.ltx_aduc_manager import LatentConditioningItem
|
| 18 |
+
from managers.gpu_manager import gpu_manager
|
| 19 |
+
from api.ltx.ltx_aduc_manager import ltx_aduc_manager
|
| 20 |
|
| 21 |
# ==============================================================================
|
| 22 |
# --- IMPORTAÇÕES DA ARQUITETURA E DO LTX ---
|
| 23 |
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Adiciona o path para as bibliotecas do LTX
|
|
|
|
| 26 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 27 |
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 28 |
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
|
| 29 |
+
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 30 |
+
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
|
|
|
| 31 |
|
| 32 |
# ==============================================================================
|
| 33 |
# --- CLASSE DO SERVIÇO VAE ---
|
| 34 |
# ==============================================================================
|
| 35 |
|
| 36 |
+
class VaeAducPipeline:
|
| 37 |
_instance = None
|
| 38 |
_lock = threading.Lock()
|
| 39 |
|
|
|
|
| 58 |
# 2. Obter o modelo VAE já carregado pelo LTXPoolManager
|
| 59 |
# Isso garante consistência e evita carregar o modelo duas vezes.
|
| 60 |
try:
|
| 61 |
+
from api.ltx.ltx_aduc_manager import ltx_aduc_manager
|
| 62 |
+
if ltx_aduc_manager is None or ltx_aduc_manager.get_pipeline() is None:
|
| 63 |
raise RuntimeError("LTXPoolManager is not initialized yet. VaeServer must be initialized after.")
|
| 64 |
+
self.vae = ltx_aduc_manager.get_pipeline().vae
|
| 65 |
except Exception as e:
|
| 66 |
logging.critical(f"Failed to get VAE from LTXPoolManager. Error: {e}", exc_info=True)
|
| 67 |
raise
|
|
|
|
| 148 |
finally:
|
| 149 |
self._cleanup_gpu()
|
| 150 |
|
| 151 |
+
vae_aduc_pipeline = VaeAducPipeline()
|
|
|