Spaces:
Paused
Paused
Update api/ltx/ltx_utils.py
Browse files- api/ltx/ltx_utils.py +84 -219
api/ltx/ltx_utils.py
CHANGED
|
@@ -1,263 +1,144 @@
|
|
| 1 |
# FILE: api/ltx/ltx_utils.py
|
| 2 |
-
# DESCRIPTION:
|
| 3 |
-
#
|
| 4 |
-
# and other stateless helper functions.
|
| 5 |
|
| 6 |
import os
|
| 7 |
import random
|
| 8 |
import json
|
| 9 |
import logging
|
|
|
|
| 10 |
import sys
|
| 11 |
from pathlib import Path
|
| 12 |
-
from typing import Dict, Tuple, Union
|
| 13 |
-
import torchvision.transforms.functional as TVF
|
| 14 |
-
from PIL import Image
|
| 15 |
|
|
|
|
| 16 |
import torch
|
|
|
|
|
|
|
| 17 |
from safetensors import safe_open
|
| 18 |
from transformers import T5EncoderModel, T5Tokenizer
|
| 19 |
|
| 20 |
# ==============================================================================
|
| 21 |
-
# ---
|
| 22 |
# ==============================================================================
|
| 23 |
|
|
|
|
| 24 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 25 |
|
| 26 |
def add_deps_to_path():
|
| 27 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 28 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 29 |
if repo_path not in sys.path:
|
| 30 |
sys.path.insert(0, repo_path)
|
| 31 |
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 32 |
|
|
|
|
| 33 |
add_deps_to_path()
|
| 34 |
|
| 35 |
-
try:
|
| 36 |
-
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 37 |
-
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 38 |
-
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 39 |
-
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 40 |
-
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 41 |
-
except ImportError as e:
|
| 42 |
-
logging.critical("Failed to import a core LTX-Video library component.", exc_info=True)
|
| 43 |
-
raise ImportError(f"Could not import from LTX-Video library. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
|
| 44 |
-
|
| 45 |
-
# ==============================================================================
|
| 46 |
-
# --- FUNÇÃO HELPER 'create_transformer' (Essencial) ---
|
| 47 |
-
# ==============================================================================
|
| 48 |
-
|
| 49 |
-
def create_transformer(ckpt_path: str, precision: str) -> Transformer3DModel:
|
| 50 |
-
"""
|
| 51 |
-
Cria e carrega o modelo Transformer3D com a lógica de precisão correta,
|
| 52 |
-
incluindo suporte para a otimização float8_e4m3fn.
|
| 53 |
-
"""
|
| 54 |
-
if precision == "float8_e4m3fn":
|
| 55 |
-
try:
|
| 56 |
-
from q8_kernels.integration.patch_transformer import patch_diffusers_transformer as patch_transformer_for_q8_kernels
|
| 57 |
-
transformer = Transformer3DModel.from_pretrained(ckpt_path, dtype=torch.float8_e4m3fn)
|
| 58 |
-
patch_transformer_for_q8_kernels(transformer)
|
| 59 |
-
return transformer
|
| 60 |
-
except ImportError:
|
| 61 |
-
raise ValueError("Q8-Kernels not found. To use FP8 checkpoint, please install Q8 kernels from the project's wheels.")
|
| 62 |
-
elif precision == "bfloat16":
|
| 63 |
-
return Transformer3DModel.from_pretrained(ckpt_path).to(torch.bfloat16)
|
| 64 |
-
else:
|
| 65 |
-
return Transformer3DModel.from_pretrained(ckpt_path)
|
| 66 |
-
|
| 67 |
-
# ==============================================================================
|
| 68 |
-
# --- BUILDER DE BAIXO NÍVEL OFICIAL ---
|
| 69 |
-
# ==============================================================================
|
| 70 |
-
|
| 71 |
-
def build_complete_pipeline_on_cpu(checkpoint_path: str, config: Dict) -> LTXVideoPipeline:
|
| 72 |
-
"""
|
| 73 |
-
Constrói o pipeline LTX COMPLETO, incluindo o VAE, e o mantém na CPU.
|
| 74 |
-
Esta é a função de construção fundamental usada pelo LTXAducManager.
|
| 75 |
-
"""
|
| 76 |
-
logging.info(f"Building complete LTX pipeline from checkpoint: {Path(checkpoint_path).name}")
|
| 77 |
-
|
| 78 |
-
with safe_open(checkpoint_path, framework="pt") as f:
|
| 79 |
-
metadata = f.metadata() or {}
|
| 80 |
-
config_str = metadata.get("config", "{}")
|
| 81 |
-
allowed_inference_steps = json.loads(config_str).get("allowed_inference_steps")
|
| 82 |
-
|
| 83 |
-
precision = config.get("precision", "bfloat16")
|
| 84 |
-
|
| 85 |
-
# Usa a função helper correta para criar o transformer
|
| 86 |
-
transformer = create_transformer(checkpoint_path, precision).to("cpu")
|
| 87 |
-
|
| 88 |
-
scheduler = RectifiedFlowScheduler.from_pretrained(checkpoint_path)
|
| 89 |
-
text_encoder = T5EncoderModel.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="text_encoder").to("cpu")
|
| 90 |
-
tokenizer = T5Tokenizer.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="tokenizer")
|
| 91 |
-
patchifier = SymmetricPatchifier(patch_size=1)
|
| 92 |
-
vae = CausalVideoAutoencoder.from_pretrained(checkpoint_path).to("cpu")
|
| 93 |
-
|
| 94 |
-
if precision == "bfloat16":
|
| 95 |
-
text_encoder.to(torch.bfloat16)
|
| 96 |
-
vae.to(torch.bfloat16)
|
| 97 |
-
# O transformer já foi convertido para bfloat16 dentro de create_transformer, se aplicável
|
| 98 |
-
|
| 99 |
-
pipeline = LTXVideoPipeline(
|
| 100 |
-
transformer=transformer,
|
| 101 |
-
patchifier=patchifier,
|
| 102 |
-
text_encoder=text_encoder,
|
| 103 |
-
tokenizer=tokenizer,
|
| 104 |
-
scheduler=scheduler,
|
| 105 |
-
vae=vae, # VAE é incluído para que o pipeline possa ser auto-suficiente
|
| 106 |
-
allowed_inference_steps=allowed_inference_steps,
|
| 107 |
-
prompt_enhancer_image_caption_model=None,
|
| 108 |
-
prompt_enhancer_image_caption_processor=None,
|
| 109 |
-
prompt_enhancer_llm_model=None,
|
| 110 |
-
prompt_enhancer_llm_tokenizer=None,
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
return pipeline
|
| 114 |
-
|
| 115 |
-
# ==============================================================================
|
| 116 |
-
# --- FUNÇÕES AUXILIARES GENÉRICAS ---
|
| 117 |
-
# ==============================================================================
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# # FILE: api/ltx/ltx_utils.py
|
| 121 |
-
# DESCRIPTION: A pure utility library for the LTX ecosystem.
|
| 122 |
-
# Contains the official low-level builder function for the complete pipeline
|
| 123 |
-
# and other stateless helper functions.
|
| 124 |
-
|
| 125 |
-
import os
|
| 126 |
-
import random
|
| 127 |
-
import json
|
| 128 |
-
import logging
|
| 129 |
-
import sys
|
| 130 |
-
from pathlib import Path
|
| 131 |
-
from typing import Dict, Tuple
|
| 132 |
-
|
| 133 |
-
import torch
|
| 134 |
-
from safetensors import safe_open
|
| 135 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
| 136 |
|
| 137 |
# ==============================================================================
|
| 138 |
-
# ---
|
| 139 |
# ==============================================================================
|
| 140 |
-
|
| 141 |
-
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 142 |
-
|
| 143 |
-
def add_deps_to_path():
|
| 144 |
-
"""Adiciona o diretório do repositório LTX ao sys.path para importação de suas bibliotecas."""
|
| 145 |
-
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 146 |
-
if repo_path not in sys.path:
|
| 147 |
-
sys.path.insert(0, repo_path)
|
| 148 |
-
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 149 |
-
|
| 150 |
-
add_deps_to_path()
|
| 151 |
-
|
| 152 |
try:
|
| 153 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
|
|
|
| 154 |
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 155 |
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 156 |
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 157 |
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
|
|
|
| 158 |
except ImportError as e:
|
| 159 |
-
|
| 160 |
-
|
| 161 |
|
| 162 |
# ==============================================================================
|
| 163 |
-
# ---
|
| 164 |
# ==============================================================================
|
| 165 |
|
| 166 |
-
def
|
| 167 |
-
"""
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
from q8_kernels.integration.patch_transformer import patch_diffusers_transformer as patch_transformer_for_q8_kernels
|
| 174 |
-
transformer = Transformer3DModel.from_pretrained(ckpt_path, dtype=torch.float8_e4m3fn)
|
| 175 |
-
patch_transformer_for_q8_kernels(transformer)
|
| 176 |
-
return transformer
|
| 177 |
-
except ImportError:
|
| 178 |
-
raise ValueError("Q8-Kernels not found. To use FP8 checkpoint, please install Q8 kernels from the project's wheels.")
|
| 179 |
-
elif precision == "bfloat16":
|
| 180 |
-
return Transformer3DModel.from_pretrained(ckpt_path).to(torch.bfloat16)
|
| 181 |
-
else:
|
| 182 |
-
return Transformer3DModel.from_pretrained(ckpt_path)
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
""
|
| 193 |
-
logging.info(f"Building complete LTX pipeline from checkpoint: {Path(checkpoint_path).name}")
|
| 194 |
-
|
| 195 |
-
with safe_open(checkpoint_path, framework="pt") as f:
|
| 196 |
metadata = f.metadata() or {}
|
| 197 |
config_str = metadata.get("config", "{}")
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
-
|
|
|
|
|
|
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
scheduler = RectifiedFlowScheduler.from_pretrained(checkpoint_path)
|
| 206 |
-
text_encoder = T5EncoderModel.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="text_encoder").to("cpu")
|
| 207 |
-
tokenizer = T5Tokenizer.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="tokenizer")
|
| 208 |
patchifier = SymmetricPatchifier(patch_size=1)
|
| 209 |
-
vae = CausalVideoAutoencoder.from_pretrained(checkpoint_path).to("cpu")
|
| 210 |
|
|
|
|
| 211 |
if precision == "bfloat16":
|
| 212 |
-
text_encoder.to(torch.bfloat16)
|
| 213 |
vae.to(torch.bfloat16)
|
| 214 |
-
|
| 215 |
-
|
|
|
|
| 216 |
pipeline = LTXVideoPipeline(
|
| 217 |
-
transformer=transformer,
|
| 218 |
-
|
| 219 |
-
text_encoder=text_encoder,
|
| 220 |
-
tokenizer=tokenizer,
|
| 221 |
-
scheduler=scheduler,
|
| 222 |
-
vae=vae, # VAE é incluído para que o pipeline possa ser auto-suficiente
|
| 223 |
allowed_inference_steps=allowed_inference_steps,
|
| 224 |
-
prompt_enhancer_image_caption_model=None,
|
| 225 |
-
|
| 226 |
-
prompt_enhancer_llm_model=None,
|
| 227 |
-
prompt_enhancer_llm_tokenizer=None,
|
| 228 |
)
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
# ==============================================================================
|
| 233 |
-
# --- FUNÇÕES AUXILIARES
|
| 234 |
# ==============================================================================
|
| 235 |
|
| 236 |
def seed_everything(seed: int):
|
| 237 |
-
"""
|
| 238 |
-
Define a semente para PyTorch, NumPy e Python para garantir reprodutibilidade.
|
| 239 |
-
"""
|
| 240 |
random.seed(seed)
|
| 241 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 242 |
np.random.seed(seed)
|
| 243 |
torch.manual_seed(seed)
|
| 244 |
torch.cuda.manual_seed_all(seed)
|
| 245 |
torch.backends.cudnn.deterministic = True
|
| 246 |
-
torch.backends.cudnn.benchmark =
|
| 247 |
-
|
| 248 |
def load_image_to_tensor_with_resize_and_crop(
|
| 249 |
image_input: Union[str, Image.Image],
|
| 250 |
target_height: int,
|
| 251 |
target_width: int,
|
| 252 |
) -> torch.Tensor:
|
| 253 |
-
"""
|
| 254 |
-
Carrega, redimensiona, corta e processa uma imagem para um tensor de pixel 5D,
|
| 255 |
-
normalizado para [-1, 1], pronto para ser enviado ao VAE para encoding.
|
| 256 |
-
"""
|
| 257 |
if isinstance(image_input, str):
|
| 258 |
image = Image.open(image_input).convert("RGB")
|
| 259 |
elif isinstance(image_input, Image.Image):
|
| 260 |
-
image = image_input
|
| 261 |
else:
|
| 262 |
raise ValueError("image_input must be a file path or a PIL Image object")
|
| 263 |
|
|
@@ -267,38 +148,22 @@ def load_image_to_tensor_with_resize_and_crop(
|
|
| 267 |
|
| 268 |
if aspect_ratio_frame > aspect_ratio_target:
|
| 269 |
new_width, new_height = int(input_height * aspect_ratio_target), input_height
|
| 270 |
-
x_start = (input_width - new_width) // 2
|
| 271 |
-
image = image.crop((x_start, 0, x_start + new_width, new_height))
|
| 272 |
else:
|
| 273 |
-
new_height = int(input_width / aspect_ratio_target)
|
| 274 |
-
y_start = (input_height - new_height) // 2
|
| 275 |
-
|
| 276 |
-
|
| 277 |
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
from ltx_video.pipelines import crf_compressor
|
| 284 |
-
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
|
| 285 |
-
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
|
| 286 |
-
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
|
| 287 |
-
except ImportError:
|
| 288 |
-
logging.warning("CRF Compressor not found. Skipping compression step.")
|
| 289 |
-
|
| 290 |
frame_tensor = (frame_tensor * 2.0) - 1.0
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
def seed_everything(seed: int):
|
| 295 |
-
"""
|
| 296 |
-
Define a semente para PyTorch, NumPy e Python para garantir reprodutibilidade.
|
| 297 |
-
"""
|
| 298 |
-
random.seed(seed)
|
| 299 |
-
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 300 |
-
np.random.seed(seed)
|
| 301 |
-
torch.manual_seed(seed)
|
| 302 |
-
torch.cuda.manual_seed_all(seed)
|
| 303 |
-
torch.backends.cudnn.deterministic = True
|
| 304 |
-
torch.backends.cudnn.benchmark = False
|
|
|
|
| 1 |
# FILE: api/ltx/ltx_utils.py
|
| 2 |
+
# DESCRIPTION: Comprehensive, self-contained utility module for the LTX pipeline.
|
| 3 |
+
# Handles dependency path injection, model loading, pipeline creation, and tensor preparation.
|
|
|
|
| 4 |
|
| 5 |
import os
|
| 6 |
import random
|
| 7 |
import json
|
| 8 |
import logging
|
| 9 |
+
import time
|
| 10 |
import sys
|
| 11 |
from pathlib import Path
|
| 12 |
+
from typing import Dict, Optional, Tuple, Union
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
import numpy as np
|
| 15 |
import torch
|
| 16 |
+
import torchvision.transforms.functional as TVF
|
| 17 |
+
from PIL import Image
|
| 18 |
from safetensors import safe_open
|
| 19 |
from transformers import T5EncoderModel, T5Tokenizer
|
| 20 |
|
| 21 |
# ==============================================================================
|
| 22 |
+
# --- CRITICAL: DEPENDENCY PATH INJECTION ---
|
| 23 |
# ==============================================================================
|
| 24 |
|
| 25 |
+
# Define o caminho para o repositório clonado
|
| 26 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 27 |
|
| 28 |
def add_deps_to_path():
|
| 29 |
+
"""
|
| 30 |
+
Adiciona o diretório do repositório LTX ao sys.path para garantir que suas
|
| 31 |
+
bibliotecas possam ser importadas.
|
| 32 |
+
"""
|
| 33 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 34 |
if repo_path not in sys.path:
|
| 35 |
sys.path.insert(0, repo_path)
|
| 36 |
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 37 |
|
| 38 |
+
# Executa a função imediatamente para configurar o ambiente antes de qualquer importação.
|
| 39 |
add_deps_to_path()
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# ==============================================================================
|
| 43 |
+
# --- IMPORTAÇÕES DA BIBLIOTECA LTX-VIDEO (Após configuração do path) ---
|
| 44 |
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
try:
|
| 46 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 47 |
+
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
|
| 48 |
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 49 |
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 50 |
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 51 |
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 52 |
+
import ltx_video.pipelines.crf_compressor as crf_compressor
|
| 53 |
except ImportError as e:
|
| 54 |
+
raise ImportError(f"Could not import from LTX-Video library even after setting sys.path. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
|
| 55 |
+
|
| 56 |
|
| 57 |
# ==============================================================================
|
| 58 |
+
# --- FUNÇÕES DE CONSTRUÇÃO DE MODELO E PIPELINE ---
|
| 59 |
# ==============================================================================
|
| 60 |
|
| 61 |
+
def create_latent_upsampler(latent_upsampler_model_path: str, device: str) -> LatentUpsampler:
|
| 62 |
+
"""Loads the Latent Upsampler model from a checkpoint path."""
|
| 63 |
+
logging.info(f"Loading Latent Upsampler from: {latent_upsampler_model_path} to device: {device}")
|
| 64 |
+
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
|
| 65 |
+
latent_upsampler.to(device)
|
| 66 |
+
latent_upsampler.eval()
|
| 67 |
+
return latent_upsampler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
def build_ltx_pipeline_on_cpu(config: Dict) -> Tuple[LTXVideoPipeline, Optional[torch.nn.Module]]:
|
| 70 |
+
"""Builds the complete LTX pipeline and upsampler on the CPU."""
|
| 71 |
+
t0 = time.perf_counter()
|
| 72 |
+
logging.info("Building LTX pipeline on CPU...")
|
| 73 |
|
| 74 |
+
ckpt_path = Path(config["checkpoint_path"])
|
| 75 |
+
if not ckpt_path.is_file():
|
| 76 |
+
raise FileNotFoundError(f"Main checkpoint file not found: {ckpt_path}")
|
| 77 |
+
|
| 78 |
+
with safe_open(ckpt_path, framework="pt") as f:
|
|
|
|
|
|
|
|
|
|
| 79 |
metadata = f.metadata() or {}
|
| 80 |
config_str = metadata.get("config", "{}")
|
| 81 |
+
configs = json.loads(config_str)
|
| 82 |
+
allowed_inference_steps = configs.get("allowed_inference_steps")
|
| 83 |
|
| 84 |
+
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")
|
| 85 |
+
transformer = Transformer3DModel.from_pretrained(ckpt_path).to("cpu")
|
| 86 |
+
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
|
| 87 |
|
| 88 |
+
text_encoder_path = config["text_encoder_model_name_or_path"]
|
| 89 |
+
text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder").to("cpu")
|
| 90 |
+
tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer")
|
|
|
|
|
|
|
|
|
|
| 91 |
patchifier = SymmetricPatchifier(patch_size=1)
|
|
|
|
| 92 |
|
| 93 |
+
precision = config.get("precision", "bfloat16")
|
| 94 |
if precision == "bfloat16":
|
|
|
|
| 95 |
vae.to(torch.bfloat16)
|
| 96 |
+
transformer.to(torch.bfloat16)
|
| 97 |
+
text_encoder.to(torch.bfloat16)
|
| 98 |
+
|
| 99 |
pipeline = LTXVideoPipeline(
|
| 100 |
+
transformer=transformer, patchifier=patchifier, text_encoder=text_encoder,
|
| 101 |
+
tokenizer=tokenizer, scheduler=scheduler, vae=vae,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
allowed_inference_steps=allowed_inference_steps,
|
| 103 |
+
prompt_enhancer_image_caption_model=None, prompt_enhancer_image_caption_processor=None,
|
| 104 |
+
prompt_enhancer_llm_model=None, prompt_enhancer_llm_tokenizer=None,
|
|
|
|
|
|
|
| 105 |
)
|
| 106 |
+
|
| 107 |
+
latent_upsampler = None
|
| 108 |
+
if config.get("spatial_upscaler_model_path"):
|
| 109 |
+
spatial_path = config["spatial_upscaler_model_path"]
|
| 110 |
+
latent_upsampler = create_latent_upsampler(spatial_path, device="cpu")
|
| 111 |
+
if precision == "bfloat16":
|
| 112 |
+
latent_upsampler.to(torch.bfloat16)
|
| 113 |
+
|
| 114 |
+
logging.info(f"LTX pipeline built on CPU in {time.perf_counter() - t0:.2f}s")
|
| 115 |
+
return pipeline, latent_upsampler
|
| 116 |
+
|
| 117 |
|
| 118 |
# ==============================================================================
|
| 119 |
+
# --- FUNÇÕES AUXILIARES (Seed, Preparação de Imagem) ---
|
| 120 |
# ==============================================================================
|
| 121 |
|
| 122 |
def seed_everything(seed: int):
|
| 123 |
+
"""Sets the seed for reproducibility."""
|
|
|
|
|
|
|
| 124 |
random.seed(seed)
|
| 125 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 126 |
np.random.seed(seed)
|
| 127 |
torch.manual_seed(seed)
|
| 128 |
torch.cuda.manual_seed_all(seed)
|
| 129 |
torch.backends.cudnn.deterministic = True
|
| 130 |
+
torch.backends.cudnn.benchmark = False
|
| 131 |
+
|
| 132 |
def load_image_to_tensor_with_resize_and_crop(
|
| 133 |
image_input: Union[str, Image.Image],
|
| 134 |
target_height: int,
|
| 135 |
target_width: int,
|
| 136 |
) -> torch.Tensor:
|
| 137 |
+
"""Loads and processes an image into a 5D pixel tensor compatible with the LTX pipeline."""
|
|
|
|
|
|
|
|
|
|
| 138 |
if isinstance(image_input, str):
|
| 139 |
image = Image.open(image_input).convert("RGB")
|
| 140 |
elif isinstance(image_input, Image.Image):
|
| 141 |
+
image = image_input
|
| 142 |
else:
|
| 143 |
raise ValueError("image_input must be a file path or a PIL Image object")
|
| 144 |
|
|
|
|
| 148 |
|
| 149 |
if aspect_ratio_frame > aspect_ratio_target:
|
| 150 |
new_width, new_height = int(input_height * aspect_ratio_target), input_height
|
| 151 |
+
x_start, y_start = (input_width - new_width) // 2, 0
|
|
|
|
| 152 |
else:
|
| 153 |
+
new_width, new_height = input_width, int(input_width / aspect_ratio_target)
|
| 154 |
+
x_start, y_start = 0, (input_height - new_height) // 2
|
| 155 |
+
|
| 156 |
+
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
|
| 157 |
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
|
| 158 |
+
|
| 159 |
+
frame_tensor = TVF.to_tensor(image) # PIL -> tensor (C, H, W) in [0, 1] range
|
| 160 |
+
frame_tensor = TVF.gaussian_blur(frame_tensor, kernel_size=(3, 3))
|
| 161 |
|
| 162 |
+
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
|
| 163 |
+
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
|
| 164 |
+
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
|
| 165 |
+
# Normalize to [-1, 1] range, which the VAE expects for encoding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
frame_tensor = (frame_tensor * 2.0) - 1.0
|
| 167 |
+
|
| 168 |
+
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
|
| 169 |
+
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|