Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -108,19 +108,12 @@ def prepare_and_generate_video(
|
|
| 108 |
progress=gr.Progress(track_tqdm=True)
|
| 109 |
):
|
| 110 |
try:
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
(condition_image_2, condition_strength_2, condition_frame_index_2)
|
| 114 |
-
]
|
| 115 |
-
|
| 116 |
-
if randomize_seed:
|
| 117 |
-
seed = random.randint(0, 2**32 - 1)
|
| 118 |
-
|
| 119 |
num_frames = int(duration * FPS) + 1
|
| 120 |
temporal_compression = pipeline.vae_temporal_compression_ratio
|
| 121 |
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
|
| 122 |
|
| 123 |
-
# Etapa 1: Preparar condições para baixa resolução
|
| 124 |
downscale_factor = 2 / 3
|
| 125 |
downscaled_height = int(height * downscale_factor)
|
| 126 |
downscaled_width = int(width * downscale_factor)
|
|
@@ -128,45 +121,103 @@ def prepare_and_generate_video(
|
|
| 128 |
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
|
| 129 |
)
|
| 130 |
|
| 131 |
-
conditions_low_res = []
|
| 132 |
-
for image, strength, frame_index in conditions_data:
|
| 133 |
-
if image is not None:
|
| 134 |
-
processed_image = ImageOps.fit(image, (downscaled_width, downscaled_height), Image.LANCZOS)
|
| 135 |
-
conditions_low_res.append(LTXVideoCondition(
|
| 136 |
-
image=processed_image, strength=strength, frame_index=int(frame_index)
|
| 137 |
-
))
|
| 138 |
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
latents = pipeline(
|
| 142 |
-
prompt=prompt,
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
).frames
|
| 146 |
|
| 147 |
-
#
|
| 148 |
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
|
| 149 |
-
upscaled_latents = pipe_upsample(
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
pipeline_args_high_res = {"conditions": conditions_high_res} if conditions_high_res else {}
|
| 161 |
|
|
|
|
| 162 |
final_video_frames_np = pipeline(
|
| 163 |
-
prompt=prompt,
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
generator=torch.Generator(device="cuda").manual_seed(seed),
|
| 166 |
-
output_type="np",
|
|
|
|
| 167 |
).frames[0]
|
| 168 |
|
| 169 |
-
#
|
| 170 |
video_uint8_frames = [(frame * 255).astype(np.uint8) for frame in final_video_frames_np]
|
| 171 |
output_filename = "output.mp4"
|
| 172 |
with imageio.get_writer(output_filename, fps=FPS, quality=8, macro_block_size=1) as writer:
|
|
@@ -178,8 +229,6 @@ def prepare_and_generate_video(
|
|
| 178 |
|
| 179 |
except Exception as e:
|
| 180 |
print(f"Ocorreu um erro: {e}")
|
| 181 |
-
import traceback
|
| 182 |
-
traceback.print_exc()
|
| 183 |
return None, seed
|
| 184 |
|
| 185 |
# --- Interface Gráfica com Gradio ---
|
|
|
|
| 108 |
progress=gr.Progress(track_tqdm=True)
|
| 109 |
):
|
| 110 |
try:
|
| 111 |
+
# Lógica para agrupar as condições *dentro* da função
|
| 112 |
+
# Cálculo de frames e resolução
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
num_frames = int(duration * FPS) + 1
|
| 114 |
temporal_compression = pipeline.vae_temporal_compression_ratio
|
| 115 |
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
|
| 116 |
|
|
|
|
| 117 |
downscale_factor = 2 / 3
|
| 118 |
downscaled_height = int(height * downscale_factor)
|
| 119 |
downscaled_width = int(width * downscale_factor)
|
|
|
|
| 121 |
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
|
| 122 |
)
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
|
| 126 |
+
conditions = []
|
| 127 |
+
if condition_image_1 is not None:
|
| 128 |
+
condition_image_1 = ImageOps.fit(condition_image_1, (downscaled_width, downscaled_height), Image.LANCZOS)
|
| 129 |
+
conditions.append(LTXVideoCondition(
|
| 130 |
+
image=condition_image_1,
|
| 131 |
+
strength=condition_strength_1,
|
| 132 |
+
frame_index=int(condition_frame_index_1)
|
| 133 |
+
))
|
| 134 |
+
if condition_image_2 is not None:
|
| 135 |
+
condition_image_2 = ImageOps.fit(condition_image_2, (downscaled_width, downscaled_height), Image.LANCZOS)
|
| 136 |
+
conditions.append(LTXVideoCondition(
|
| 137 |
+
image=condition_image_2,
|
| 138 |
+
strength=condition_strength_2,
|
| 139 |
+
frame_index=int(condition_frame_index_2)
|
| 140 |
+
))
|
| 141 |
+
|
| 142 |
+
pipeline_args = {}
|
| 143 |
+
if conditions:
|
| 144 |
+
pipeline_args["conditions"] = conditions
|
| 145 |
|
| 146 |
+
# Manipulação da seed
|
| 147 |
+
if randomize_seed:
|
| 148 |
+
seed = random.randint(0, 2**32 - 1)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# ETAPA 1: Geração do vídeo em baixa resolução
|
| 152 |
latents = pipeline(
|
| 153 |
+
prompt=prompt,
|
| 154 |
+
negative_prompt=negative_prompt,
|
| 155 |
+
width=downscaled_width,
|
| 156 |
+
height=downscaled_height,
|
| 157 |
+
num_frames=num_frames,
|
| 158 |
+
timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
|
| 159 |
+
decode_timestep=0.05,
|
| 160 |
+
decode_noise_scale=0.025,
|
| 161 |
+
image_cond_noise_scale=0.0,
|
| 162 |
+
guidance_scale=guidance_scale,
|
| 163 |
+
guidance_rescale=0.7,
|
| 164 |
+
generator=torch.Generator().manual_seed(seed),
|
| 165 |
+
output_type="latent",
|
| 166 |
+
**pipeline_args
|
| 167 |
).frames
|
| 168 |
|
| 169 |
+
# ETAPA 2: Upscale dos latentes
|
| 170 |
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
|
| 171 |
+
upscaled_latents = pipe_upsample(
|
| 172 |
+
latents=latents,
|
| 173 |
+
output_type="latent"
|
| 174 |
+
).frames
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
conditions = []
|
| 179 |
+
if condition_image_1 is not None:
|
| 180 |
+
condition_image_1 = ImageOps.fit(condition_image_1, (upscaled_width, upscaled_height), Image.LANCZOS)
|
| 181 |
+
conditions.append(LTXVideoCondition(
|
| 182 |
+
image=condition_image_1,
|
| 183 |
+
strength=condition_strength_1,
|
| 184 |
+
frame_index=int(condition_frame_index_1)
|
| 185 |
+
))
|
| 186 |
+
if condition_image_2 is not None:
|
| 187 |
+
condition_image_2 = ImageOps.fit(condition_image_2, (upscaled_width, upscaled_height), Image.LANCZOS)
|
| 188 |
+
conditions.append(LTXVideoCondition(
|
| 189 |
+
image=condition_image_2,
|
| 190 |
+
strength=condition_strength_2,
|
| 191 |
+
frame_index=int(condition_frame_index_2)
|
| 192 |
+
))
|
| 193 |
+
|
| 194 |
+
pipeline_args = {}
|
| 195 |
+
if conditions:
|
| 196 |
+
pipeline_args["conditions"] = conditions
|
| 197 |
+
|
| 198 |
|
|
|
|
| 199 |
|
| 200 |
+
# ETAPA 3: Denoise final em alta resolução
|
| 201 |
final_video_frames_np = pipeline(
|
| 202 |
+
prompt=prompt,
|
| 203 |
+
negative_prompt=negative_prompt,
|
| 204 |
+
width=upscaled_width,
|
| 205 |
+
height=upscaled_height,
|
| 206 |
+
num_frames=num_frames,
|
| 207 |
+
denoise_strength=0.999,
|
| 208 |
+
timesteps=[1000, 909, 725, 421, 0],
|
| 209 |
+
latents=upscaled_latents,
|
| 210 |
+
decode_timestep=0.05,
|
| 211 |
+
decode_noise_scale=0.025,
|
| 212 |
+
image_cond_noise_scale=0.0,
|
| 213 |
+
guidance_scale=guidance_scale,
|
| 214 |
+
guidance_rescale=0.7,
|
| 215 |
generator=torch.Generator(device="cuda").manual_seed(seed),
|
| 216 |
+
output_type="np",
|
| 217 |
+
**pipeline_args
|
| 218 |
).frames[0]
|
| 219 |
|
| 220 |
+
# Exportação para arquivo MP4
|
| 221 |
video_uint8_frames = [(frame * 255).astype(np.uint8) for frame in final_video_frames_np]
|
| 222 |
output_filename = "output.mp4"
|
| 223 |
with imageio.get_writer(output_filename, fps=FPS, quality=8, macro_block_size=1) as writer:
|
|
|
|
| 229 |
|
| 230 |
except Exception as e:
|
| 231 |
print(f"Ocorreu um erro: {e}")
|
|
|
|
|
|
|
| 232 |
return None, seed
|
| 233 |
|
| 234 |
# --- Interface Gráfica com Gradio ---
|