Spaces:
Paused
Paused
Update video_service.py
Browse files- video_service.py +201 -103
video_service.py
CHANGED
|
@@ -14,6 +14,8 @@ import tempfile
|
|
| 14 |
from huggingface_hub import hf_hub_download
|
| 15 |
import sys
|
| 16 |
import subprocess
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
|
| 19 |
|
|
@@ -23,7 +25,6 @@ def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
|
|
| 23 |
import pynvml as nvml
|
| 24 |
nvml.nvmlInit()
|
| 25 |
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
|
| 26 |
-
# Try v3, then fall back to the generic name if binding differs
|
| 27 |
try:
|
| 28 |
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
|
| 29 |
except Exception:
|
|
@@ -33,7 +34,6 @@ def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
|
|
| 33 |
pid = int(p.pid)
|
| 34 |
used_mb = None
|
| 35 |
try:
|
| 36 |
-
# NVML returns bytes; some bindings may use NVML_VALUE_NOT_AVAILABLE
|
| 37 |
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
|
| 38 |
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
|
| 39 |
except Exception:
|
|
@@ -53,7 +53,6 @@ def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
|
|
| 53 |
return []
|
| 54 |
|
| 55 |
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
|
| 56 |
-
# CSV, no header, no units gives lines: "PID,process_name,used_memory"
|
| 57 |
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
|
| 58 |
try:
|
| 59 |
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
|
|
@@ -82,7 +81,6 @@ def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
|
|
| 82 |
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
|
| 83 |
if not processes:
|
| 84 |
return " - Processos ativos: (nenhum)\n"
|
| 85 |
-
# sort by used_mb desc, then pid
|
| 86 |
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
|
| 87 |
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
|
| 88 |
for p in processes:
|
|
@@ -91,36 +89,6 @@ def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
|
|
| 91 |
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
|
| 92 |
return "\n".join(lines) + "\n"
|
| 93 |
|
| 94 |
-
# Integração no método existente:
|
| 95 |
-
def _log_gpu_memory(self, stage_name: str):
|
| 96 |
-
import torch
|
| 97 |
-
if self.device != "cuda":
|
| 98 |
-
return
|
| 99 |
-
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
|
| 100 |
-
current_reserved_b = torch.cuda.memory_reserved(device_index)
|
| 101 |
-
current_reserved_mb = current_reserved_b / (1024 ** 2)
|
| 102 |
-
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
|
| 103 |
-
total_memory_mb = total_memory_b / (1024 ** 2)
|
| 104 |
-
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
|
| 105 |
-
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
|
| 106 |
-
|
| 107 |
-
# Coleta de processos: tenta NVML, depois fallback para nvidia-smi
|
| 108 |
-
processes = _query_gpu_processes_via_nvml(device_index)
|
| 109 |
-
if not processes:
|
| 110 |
-
processes = _query_gpu_processes_via_nvidiasmi(device_index)
|
| 111 |
-
|
| 112 |
-
print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} (cuda:{device_index}) ---")
|
| 113 |
-
print(f" - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB")
|
| 114 |
-
print(f" - Variação desde o último log: {delta_mb:+.2f} MB")
|
| 115 |
-
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
|
| 116 |
-
print(f" - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB")
|
| 117 |
-
# Imprime tabela de processos
|
| 118 |
-
print(_gpu_process_table(processes, os.getpid()), end="")
|
| 119 |
-
print("--------------------------------------------------\n")
|
| 120 |
-
self.last_memory_reserved_mb = current_reserved_mb
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
def run_setup():
|
| 125 |
"""Executa o script setup.py para clonar as dependências necessárias."""
|
| 126 |
setup_script_path = "setup.py"
|
|
@@ -151,9 +119,12 @@ add_deps_to_path()
|
|
| 151 |
|
| 152 |
# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
|
| 153 |
from inference import (
|
| 154 |
-
create_ltx_video_pipeline,
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
| 157 |
)
|
| 158 |
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 159 |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
|
@@ -175,15 +146,13 @@ def log_tensor_info(tensor, name="Tensor"):
|
|
| 175 |
print(" - O tensor está vazio, sem estatísticas.")
|
| 176 |
print("------------------------------------------\n")
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
|
| 181 |
class VideoService:
|
| 182 |
def __init__(self):
|
| 183 |
print("Inicializando VideoService...")
|
| 184 |
self.config = self._load_config()
|
| 185 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 186 |
-
self.last_memory_reserved_mb = 0
|
| 187 |
self._tmp_dirs = set()
|
| 188 |
self._tmp_files = set()
|
| 189 |
self._last_outputs = []
|
|
@@ -196,25 +165,53 @@ class VideoService:
|
|
| 196 |
torch.cuda.empty_cache()
|
| 197 |
self._log_gpu_memory("Após carregar modelos")
|
| 198 |
print("VideoService pronto para uso.")
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
def _register_tmp_dir(self, d: str):
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
def _register_tmp_file(self, f: str):
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
|
| 209 |
"""
|
| 210 |
-
Remove temporários e coleta memória.
|
| 211 |
keep_paths: caminhos que não devem ser removidos (ex.: vídeo final).
|
| 212 |
extra_paths: caminhos adicionais para tentar remover (opcional).
|
| 213 |
"""
|
| 214 |
keep = set(keep_paths or [])
|
| 215 |
extras = set(extra_paths or [])
|
| 216 |
|
| 217 |
-
# Remoção de arquivos
|
| 218 |
for f in list(self._tmp_files | extras):
|
| 219 |
try:
|
| 220 |
if f not in keep and os.path.isfile(f):
|
|
@@ -224,7 +221,6 @@ class VideoService:
|
|
| 224 |
finally:
|
| 225 |
self._tmp_files.discard(f)
|
| 226 |
|
| 227 |
-
# Remoção de diretórios
|
| 228 |
for d in list(self._tmp_dirs):
|
| 229 |
try:
|
| 230 |
if d not in keep and os.path.isdir(d):
|
|
@@ -234,13 +230,10 @@ class VideoService:
|
|
| 234 |
finally:
|
| 235 |
self._tmp_dirs.discard(d)
|
| 236 |
|
| 237 |
-
# Coleta de GC e limpeza de VRAM
|
| 238 |
gc.collect()
|
| 239 |
try:
|
| 240 |
-
import torch
|
| 241 |
if clear_gpu and torch.cuda.is_available():
|
| 242 |
torch.cuda.empty_cache()
|
| 243 |
-
# Limpa buffers de IPC quando aplicável
|
| 244 |
try:
|
| 245 |
torch.cuda.ipc_collect()
|
| 246 |
except Exception:
|
|
@@ -248,13 +241,11 @@ class VideoService:
|
|
| 248 |
except Exception:
|
| 249 |
pass
|
| 250 |
|
| 251 |
-
# Log opcional pós-limpeza
|
| 252 |
try:
|
| 253 |
self._log_gpu_memory("Após finalize")
|
| 254 |
except Exception:
|
| 255 |
pass
|
| 256 |
-
|
| 257 |
-
|
| 258 |
def _load_config(self):
|
| 259 |
config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
|
| 260 |
with open(config_file_path, "r") as file:
|
|
@@ -262,28 +253,68 @@ class VideoService:
|
|
| 262 |
|
| 263 |
def _load_models(self):
|
| 264 |
LTX_REPO = "Lightricks/LTX-Video"
|
| 265 |
-
distilled_model_path = hf_hub_download(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
self.config["checkpoint_path"] = distilled_model_path
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
latent_upsampler = None
|
| 271 |
if self.config.get("spatial_upscaler_model_path"):
|
| 272 |
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
|
|
|
| 273 |
return pipeline, latent_upsampler
|
| 274 |
-
|
| 275 |
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
|
| 276 |
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 277 |
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 278 |
return tensor.to(self.device)
|
| 279 |
|
| 280 |
-
def generate(
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
if self.device == "cuda":
|
| 288 |
torch.cuda.empty_cache()
|
| 289 |
torch.cuda.reset_peak_memory_stats()
|
|
@@ -302,14 +333,14 @@ class VideoService:
|
|
| 302 |
target_frames_rounded = round(duration * FPS)
|
| 303 |
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
|
| 304 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
|
| 305 |
-
|
| 306 |
height_padded = ((height - 1) // 32 + 1) * 32
|
| 307 |
width_padded = ((width - 1) // 32 + 1) * 32
|
| 308 |
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 309 |
-
|
| 310 |
generator = torch.Generator(device=self.device).manual_seed(used_seed)
|
| 311 |
-
|
| 312 |
conditioning_items = []
|
|
|
|
| 313 |
if mode == "image-to-video":
|
| 314 |
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
|
| 315 |
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
|
|
@@ -323,22 +354,41 @@ class VideoService:
|
|
| 323 |
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
|
| 324 |
|
| 325 |
call_kwargs = {
|
| 326 |
-
"prompt": prompt,
|
| 327 |
-
"
|
| 328 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
"media_items": None,
|
| 330 |
-
"decode_timestep": self.config["decode_timestep"],
|
| 331 |
-
"
|
| 332 |
-
"
|
|
|
|
|
|
|
|
|
|
| 333 |
"mixed_precision": (self.config["precision"] == "mixed_precision"),
|
| 334 |
-
"offload_to_cpu": False,
|
| 335 |
-
"
|
|
|
|
| 336 |
}
|
| 337 |
|
| 338 |
if mode == "video-to-video":
|
| 339 |
-
call_kwargs["media_items"] = load_media_file(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
result_tensor = None
|
|
|
|
|
|
|
|
|
|
| 342 |
if improve_texture:
|
| 343 |
if not self.latent_upsampler:
|
| 344 |
raise ValueError("Upscaler espacial não carregado.")
|
|
@@ -347,53 +397,101 @@ class VideoService:
|
|
| 347 |
first_pass_args["guidance_scale"] = float(guidance_scale)
|
| 348 |
second_pass_args = self.config.get("second_pass", {}).copy()
|
| 349 |
second_pass_args["guidance_scale"] = float(guidance_scale)
|
|
|
|
| 350 |
multi_scale_call_kwargs = call_kwargs.copy()
|
| 351 |
-
multi_scale_call_kwargs.update(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
result_tensor = multi_scale_pipeline(**multi_scale_call_kwargs).images
|
| 353 |
log_tensor_info(result_tensor, "Resultado da Etapa 2 (Saída do Pipeline Multi-Scale)")
|
| 354 |
else:
|
| 355 |
single_pass_kwargs = call_kwargs.copy()
|
| 356 |
first_pass_config = self.config.get("first_pass", {})
|
| 357 |
-
single_pass_kwargs.update(
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
if mode == "video-to-video":
|
| 366 |
-
single_pass_kwargs["timesteps"] = [0.7]
|
| 367 |
print("[INFO] Modo video-to-video (etapa única): definindo timesteps (força) para [0.7]")
|
| 368 |
else:
|
| 369 |
single_pass_kwargs["timesteps"] = first_pass_config.get("timesteps")
|
| 370 |
-
|
| 371 |
-
|
| 372 |
print("\n[INFO] Executando pipeline de etapa única...")
|
| 373 |
result_tensor = self.pipeline(**single_pass_kwargs).images
|
| 374 |
-
|
| 375 |
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
| 376 |
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
| 377 |
slice_w_end = -pad_right if pad_right > 0 else None
|
| 378 |
-
|
| 379 |
result_tensor = result_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
|
| 380 |
log_tensor_info(result_tensor, "Tensor Final (Após Pós-processamento, Antes de Salvar)")
|
| 381 |
|
| 382 |
video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
|
|
|
|
|
|
| 394 |
|
| 395 |
-
|
| 396 |
-
|
|
|
|
|
|
|
| 397 |
|
| 398 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 399 |
-
video_generation_service = VideoService()
|
|
|
|
| 14 |
from huggingface_hub import hf_hub_download
|
| 15 |
import sys
|
| 16 |
import subprocess
|
| 17 |
+
import gc
|
| 18 |
+
import shutil
|
| 19 |
|
| 20 |
# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
|
| 21 |
|
|
|
|
| 25 |
import pynvml as nvml
|
| 26 |
nvml.nvmlInit()
|
| 27 |
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
|
|
|
|
| 28 |
try:
|
| 29 |
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
|
| 30 |
except Exception:
|
|
|
|
| 34 |
pid = int(p.pid)
|
| 35 |
used_mb = None
|
| 36 |
try:
|
|
|
|
| 37 |
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
|
| 38 |
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
|
| 39 |
except Exception:
|
|
|
|
| 53 |
return []
|
| 54 |
|
| 55 |
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
|
|
|
|
| 56 |
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
|
| 57 |
try:
|
| 58 |
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
|
|
|
|
| 81 |
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
|
| 82 |
if not processes:
|
| 83 |
return " - Processos ativos: (nenhum)\n"
|
|
|
|
| 84 |
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
|
| 85 |
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
|
| 86 |
for p in processes:
|
|
|
|
| 89 |
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
|
| 90 |
return "\n".join(lines) + "\n"
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
def run_setup():
|
| 93 |
"""Executa o script setup.py para clonar as dependências necessárias."""
|
| 94 |
setup_script_path = "setup.py"
|
|
|
|
| 119 |
|
| 120 |
# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
|
| 121 |
from inference import (
|
| 122 |
+
create_ltx_video_pipeline,
|
| 123 |
+
create_latent_upsampler,
|
| 124 |
+
load_image_to_tensor_with_resize_and_crop,
|
| 125 |
+
seed_everething,
|
| 126 |
+
calculate_padding,
|
| 127 |
+
load_media_file,
|
| 128 |
)
|
| 129 |
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 130 |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
|
|
|
| 146 |
print(" - O tensor está vazio, sem estatísticas.")
|
| 147 |
print("------------------------------------------\n")
|
| 148 |
|
|
|
|
|
|
|
| 149 |
# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
|
| 150 |
class VideoService:
|
| 151 |
def __init__(self):
|
| 152 |
print("Inicializando VideoService...")
|
| 153 |
self.config = self._load_config()
|
| 154 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 155 |
+
self.last_memory_reserved_mb = 0.0
|
| 156 |
self._tmp_dirs = set()
|
| 157 |
self._tmp_files = set()
|
| 158 |
self._last_outputs = []
|
|
|
|
| 165 |
torch.cuda.empty_cache()
|
| 166 |
self._log_gpu_memory("Após carregar modelos")
|
| 167 |
print("VideoService pronto para uso.")
|
| 168 |
+
|
| 169 |
+
# Método de log de GPU como parte da classe
|
| 170 |
+
def _log_gpu_memory(self, stage_name: str):
|
| 171 |
+
if self.device != "cuda":
|
| 172 |
+
return
|
| 173 |
+
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
|
| 174 |
+
current_reserved_b = torch.cuda.memory_reserved(device_index)
|
| 175 |
+
current_reserved_mb = current_reserved_b / (1024 ** 2)
|
| 176 |
+
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
|
| 177 |
+
total_memory_mb = total_memory_b / (1024 ** 2)
|
| 178 |
+
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
|
| 179 |
+
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
|
| 180 |
+
processes = _query_gpu_processes_via_nvml(device_index)
|
| 181 |
+
if not processes:
|
| 182 |
+
processes = _query_gpu_processes_via_nvidiasmi(device_index)
|
| 183 |
+
print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} (cuda:{device_index}) ---")
|
| 184 |
+
print(f" - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB")
|
| 185 |
+
print(f" - Variação desde o último log: {delta_mb:+.2f} MB")
|
| 186 |
+
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
|
| 187 |
+
print(f" - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB")
|
| 188 |
+
print(_gpu_process_table(processes, os.getpid()), end="")
|
| 189 |
+
print("--------------------------------------------------\n")
|
| 190 |
+
self.last_memory_reserved_mb = current_reserved_mb
|
| 191 |
+
|
| 192 |
def _register_tmp_dir(self, d: str):
|
| 193 |
+
try:
|
| 194 |
+
if d and os.path.isdir(d):
|
| 195 |
+
self._tmp_dirs.add(d)
|
| 196 |
+
except Exception:
|
| 197 |
+
pass
|
| 198 |
|
| 199 |
def _register_tmp_file(self, f: str):
|
| 200 |
+
try:
|
| 201 |
+
if f and os.path.isfile(f):
|
| 202 |
+
self._tmp_files.add(f)
|
| 203 |
+
except Exception:
|
| 204 |
+
pass
|
| 205 |
|
| 206 |
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
|
| 207 |
"""
|
| 208 |
+
Remove temporários e coleta memória.
|
| 209 |
keep_paths: caminhos que não devem ser removidos (ex.: vídeo final).
|
| 210 |
extra_paths: caminhos adicionais para tentar remover (opcional).
|
| 211 |
"""
|
| 212 |
keep = set(keep_paths or [])
|
| 213 |
extras = set(extra_paths or [])
|
| 214 |
|
|
|
|
| 215 |
for f in list(self._tmp_files | extras):
|
| 216 |
try:
|
| 217 |
if f not in keep and os.path.isfile(f):
|
|
|
|
| 221 |
finally:
|
| 222 |
self._tmp_files.discard(f)
|
| 223 |
|
|
|
|
| 224 |
for d in list(self._tmp_dirs):
|
| 225 |
try:
|
| 226 |
if d not in keep and os.path.isdir(d):
|
|
|
|
| 230 |
finally:
|
| 231 |
self._tmp_dirs.discard(d)
|
| 232 |
|
|
|
|
| 233 |
gc.collect()
|
| 234 |
try:
|
|
|
|
| 235 |
if clear_gpu and torch.cuda.is_available():
|
| 236 |
torch.cuda.empty_cache()
|
|
|
|
| 237 |
try:
|
| 238 |
torch.cuda.ipc_collect()
|
| 239 |
except Exception:
|
|
|
|
| 241 |
except Exception:
|
| 242 |
pass
|
| 243 |
|
|
|
|
| 244 |
try:
|
| 245 |
self._log_gpu_memory("Após finalize")
|
| 246 |
except Exception:
|
| 247 |
pass
|
| 248 |
+
|
|
|
|
| 249 |
def _load_config(self):
|
| 250 |
config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
|
| 251 |
with open(config_file_path, "r") as file:
|
|
|
|
| 253 |
|
| 254 |
def _load_models(self):
|
| 255 |
LTX_REPO = "Lightricks/LTX-Video"
|
| 256 |
+
distilled_model_path = hf_hub_download(
|
| 257 |
+
repo_id=LTX_REPO,
|
| 258 |
+
filename=self.config["checkpoint_path"],
|
| 259 |
+
local_dir=os.getenv("HF_HOME"),
|
| 260 |
+
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 261 |
+
token=os.getenv("HF_TOKEN"),
|
| 262 |
+
)
|
| 263 |
self.config["checkpoint_path"] = distilled_model_path
|
| 264 |
+
|
| 265 |
+
spatial_upscaler_path = hf_hub_download(
|
| 266 |
+
repo_id=LTX_REPO,
|
| 267 |
+
filename=self.config["spatial_upscaler_model_path"],
|
| 268 |
+
local_dir=os.getenv("HF_HOME"),
|
| 269 |
+
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 270 |
+
token=os.getenv("HF_TOKEN"),
|
| 271 |
+
)
|
| 272 |
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
|
| 273 |
+
|
| 274 |
+
pipeline = create_ltx_video_pipeline(
|
| 275 |
+
ckpt_path=self.config["checkpoint_path"],
|
| 276 |
+
precision=self.config["precision"],
|
| 277 |
+
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 278 |
+
sampler=self.config["sampler"],
|
| 279 |
+
device="cpu",
|
| 280 |
+
enhance_prompt=False,
|
| 281 |
+
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
|
| 282 |
+
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
latent_upsampler = None
|
| 286 |
if self.config.get("spatial_upscaler_model_path"):
|
| 287 |
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 288 |
+
|
| 289 |
return pipeline, latent_upsampler
|
| 290 |
+
|
| 291 |
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
|
| 292 |
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 293 |
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 294 |
return tensor.to(self.device)
|
| 295 |
|
| 296 |
+
def generate(
|
| 297 |
+
self,
|
| 298 |
+
prompt,
|
| 299 |
+
negative_prompt,
|
| 300 |
+
mode="text-to-video",
|
| 301 |
+
start_image_filepath=None,
|
| 302 |
+
middle_image_filepath=None,
|
| 303 |
+
middle_frame_number=None,
|
| 304 |
+
middle_image_weight=1.0,
|
| 305 |
+
end_image_filepath=None,
|
| 306 |
+
end_image_weight=1.0,
|
| 307 |
+
input_video_filepath=None,
|
| 308 |
+
height=512,
|
| 309 |
+
width=704,
|
| 310 |
+
duration=2.0,
|
| 311 |
+
frames_to_use=9,
|
| 312 |
+
seed=42,
|
| 313 |
+
randomize_seed=True,
|
| 314 |
+
guidance_scale=3.0,
|
| 315 |
+
improve_texture=True,
|
| 316 |
+
progress_callback=None,
|
| 317 |
+
):
|
| 318 |
if self.device == "cuda":
|
| 319 |
torch.cuda.empty_cache()
|
| 320 |
torch.cuda.reset_peak_memory_stats()
|
|
|
|
| 333 |
target_frames_rounded = round(duration * FPS)
|
| 334 |
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
|
| 335 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
|
| 336 |
+
|
| 337 |
height_padded = ((height - 1) // 32 + 1) * 32
|
| 338 |
width_padded = ((width - 1) // 32 + 1) * 32
|
| 339 |
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 340 |
+
|
| 341 |
generator = torch.Generator(device=self.device).manual_seed(used_seed)
|
|
|
|
| 342 |
conditioning_items = []
|
| 343 |
+
|
| 344 |
if mode == "image-to-video":
|
| 345 |
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
|
| 346 |
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
|
|
|
|
| 354 |
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
|
| 355 |
|
| 356 |
call_kwargs = {
|
| 357 |
+
"prompt": prompt,
|
| 358 |
+
"negative_prompt": negative_prompt,
|
| 359 |
+
"height": height_padded,
|
| 360 |
+
"width": width_padded,
|
| 361 |
+
"num_frames": actual_num_frames,
|
| 362 |
+
"frame_rate": int(FPS),
|
| 363 |
+
"generator": generator,
|
| 364 |
+
"output_type": "pt",
|
| 365 |
+
"conditioning_items": conditioning_items if conditioning_items else None,
|
| 366 |
"media_items": None,
|
| 367 |
+
"decode_timestep": self.config["decode_timestep"],
|
| 368 |
+
"decode_noise_scale": self.config["decode_noise_scale"],
|
| 369 |
+
"stochastic_sampling": self.config["stochastic_sampling"],
|
| 370 |
+
"image_cond_noise_scale": 0.15,
|
| 371 |
+
"is_video": True,
|
| 372 |
+
"vae_per_channel_normalize": True,
|
| 373 |
"mixed_precision": (self.config["precision"] == "mixed_precision"),
|
| 374 |
+
"offload_to_cpu": False,
|
| 375 |
+
"enhance_prompt": False,
|
| 376 |
+
"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
|
| 377 |
}
|
| 378 |
|
| 379 |
if mode == "video-to-video":
|
| 380 |
+
call_kwargs["media_items"] = load_media_file(
|
| 381 |
+
media_path=input_video_filepath,
|
| 382 |
+
height=height,
|
| 383 |
+
width=width,
|
| 384 |
+
max_frames=int(frames_to_use),
|
| 385 |
+
padding=padding_values,
|
| 386 |
+
).to(self.device)
|
| 387 |
|
| 388 |
result_tensor = None
|
| 389 |
+
video_np = None
|
| 390 |
+
multi_scale_pipeline = None
|
| 391 |
+
|
| 392 |
if improve_texture:
|
| 393 |
if not self.latent_upsampler:
|
| 394 |
raise ValueError("Upscaler espacial não carregado.")
|
|
|
|
| 397 |
first_pass_args["guidance_scale"] = float(guidance_scale)
|
| 398 |
second_pass_args = self.config.get("second_pass", {}).copy()
|
| 399 |
second_pass_args["guidance_scale"] = float(guidance_scale)
|
| 400 |
+
|
| 401 |
multi_scale_call_kwargs = call_kwargs.copy()
|
| 402 |
+
multi_scale_call_kwargs.update(
|
| 403 |
+
{
|
| 404 |
+
"downscale_factor": self.config["downscale_factor"],
|
| 405 |
+
"first_pass": first_pass_args,
|
| 406 |
+
"second_pass": second_pass_args,
|
| 407 |
+
}
|
| 408 |
+
)
|
| 409 |
result_tensor = multi_scale_pipeline(**multi_scale_call_kwargs).images
|
| 410 |
log_tensor_info(result_tensor, "Resultado da Etapa 2 (Saída do Pipeline Multi-Scale)")
|
| 411 |
else:
|
| 412 |
single_pass_kwargs = call_kwargs.copy()
|
| 413 |
first_pass_config = self.config.get("first_pass", {})
|
| 414 |
+
single_pass_kwargs.update(
|
| 415 |
+
{
|
| 416 |
+
"guidance_scale": float(guidance_scale),
|
| 417 |
+
"stg_scale": first_pass_config.get("stg_scale"),
|
| 418 |
+
"rescaling_scale": first_pass_config.get("rescaling_scale"),
|
| 419 |
+
"skip_block_list": first_pass_config.get("skip_block_list"),
|
| 420 |
+
}
|
| 421 |
+
)
|
| 422 |
if mode == "video-to-video":
|
| 423 |
+
single_pass_kwargs["timesteps"] = [0.7]
|
| 424 |
print("[INFO] Modo video-to-video (etapa única): definindo timesteps (força) para [0.7]")
|
| 425 |
else:
|
| 426 |
single_pass_kwargs["timesteps"] = first_pass_config.get("timesteps")
|
| 427 |
+
|
|
|
|
| 428 |
print("\n[INFO] Executando pipeline de etapa única...")
|
| 429 |
result_tensor = self.pipeline(**single_pass_kwargs).images
|
| 430 |
+
|
| 431 |
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
| 432 |
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
| 433 |
slice_w_end = -pad_right if pad_right > 0 else None
|
|
|
|
| 434 |
result_tensor = result_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
|
| 435 |
log_tensor_info(result_tensor, "Tensor Final (Após Pós-processamento, Antes de Salvar)")
|
| 436 |
|
| 437 |
video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
|
| 438 |
+
|
| 439 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_")
|
| 440 |
+
self._register_tmp_dir(temp_dir)
|
| 441 |
+
results_dir = "/data/results"
|
| 442 |
+
os.makedirs(results_dir, exist_ok=True)
|
| 443 |
+
|
| 444 |
+
final_output_path = None
|
| 445 |
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
|
| 446 |
+
try:
|
| 447 |
+
with imageio.get_writer(
|
| 448 |
+
output_video_path, fps=call_kwargs["frame_rate"], codec="libx264", quality=8
|
| 449 |
+
) as writer:
|
| 450 |
+
total_frames = len(video_np)
|
| 451 |
+
for i, frame in enumerate(video_np):
|
| 452 |
+
writer.append_data(frame)
|
| 453 |
+
if progress_callback:
|
| 454 |
+
progress_callback(i + 1, total_frames)
|
| 455 |
+
|
| 456 |
+
candidate_final = os.path.join(results_dir, f"output_{used_seed}.mp4")
|
| 457 |
+
try:
|
| 458 |
+
shutil.move(output_video_path, candidate_final)
|
| 459 |
+
final_output_path = candidate_final
|
| 460 |
+
except Exception:
|
| 461 |
+
final_output_path = output_video_path
|
| 462 |
+
self._register_tmp_file(output_video_path)
|
| 463 |
+
|
| 464 |
+
self._log_gpu_memory("Fim da Geração")
|
| 465 |
+
return final_output_path, used_seed
|
| 466 |
+
finally:
|
| 467 |
+
try:
|
| 468 |
+
del result_tensor
|
| 469 |
+
except Exception:
|
| 470 |
+
pass
|
| 471 |
+
try:
|
| 472 |
+
del video_np
|
| 473 |
+
except Exception:
|
| 474 |
+
pass
|
| 475 |
+
try:
|
| 476 |
+
del multi_scale_pipeline
|
| 477 |
+
except Exception:
|
| 478 |
+
pass
|
| 479 |
|
| 480 |
+
gc.collect()
|
| 481 |
+
try:
|
| 482 |
+
if self.device == "cuda":
|
| 483 |
+
torch.cuda.empty_cache()
|
| 484 |
+
try:
|
| 485 |
+
torch.cuda.ipc_collect()
|
| 486 |
+
except Exception:
|
| 487 |
+
pass
|
| 488 |
+
except Exception:
|
| 489 |
+
pass
|
| 490 |
|
| 491 |
+
try:
|
| 492 |
+
self.finalize(keep_paths=[final_output_path] if final_output_path else [])
|
| 493 |
+
except Exception:
|
| 494 |
+
pass
|
| 495 |
|
| 496 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 497 |
+
video_generation_service = VideoService()
|