Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,105 +1,129 @@
|
|
| 1 |
# FILE: app.py
|
| 2 |
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
|
| 3 |
-
# This version is
|
| 4 |
-
#
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import traceback
|
| 8 |
import sys
|
| 9 |
import os
|
| 10 |
import logging
|
| 11 |
-
from
|
|
|
|
| 12 |
|
| 13 |
# ==============================================================================
|
| 14 |
-
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS ---
|
| 15 |
# ==============================================================================
|
| 16 |
|
| 17 |
-
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
from api.ltx.ltx_aduc_orchestrator import ltx_aduc_orchestrator
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
from api.
|
| 24 |
-
|
| 25 |
-
# Nosso decorador de logging para depuração
|
| 26 |
-
from utils.debug_utils import log_function_io
|
| 27 |
-
|
| 28 |
-
logging.info("All backend services (Orchestrator, SeedVR) and debug utils imported successfully.")
|
| 29 |
-
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# ==============================================================================
|
| 33 |
# --- FUNÇÕES WRAPPER (PONTE ENTRE UI E BACKEND) ---
|
| 34 |
# ==============================================================================
|
| 35 |
|
| 36 |
@log_function_io
|
| 37 |
-
def
|
| 38 |
-
prompt: str,
|
| 39 |
height: int, width: int, duration: float,
|
| 40 |
-
|
| 41 |
-
fp_num_inference_steps: int,
|
| 42 |
progress=gr.Progress(track_tqdm=True)
|
| 43 |
) -> tuple:
|
| 44 |
"""
|
| 45 |
-
|
| 46 |
"""
|
| 47 |
try:
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
ltx_configs = {
|
| 52 |
-
"
|
| 53 |
-
"
|
| 54 |
-
"
|
| 55 |
-
"num_inference_steps": fp_num_inference_steps
|
| 56 |
}
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
initial_image=initial_image_pil,
|
| 65 |
-
height=height,
|
| 66 |
-
width=width,
|
| 67 |
-
duration_in_seconds=duration,
|
| 68 |
-
ltx_configs=ltx_configs
|
| 69 |
)
|
| 70 |
|
| 71 |
-
if not video_path:
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
logging.info(f"[UI] Orchestrator job successful. Video path: {video_path}")
|
| 75 |
-
|
| 76 |
-
# O estado agora pode ser mais simples, apenas guardando o caminho do vídeo gerado para o próximo passo (SeedVR).
|
| 77 |
-
new_state = {"low_res_video": video_path}
|
| 78 |
return video_path, new_state, gr.update(visible=True)
|
| 79 |
|
| 80 |
except Exception as e:
|
| 81 |
-
error_message = f"❌ An error occurred during
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
|
| 83 |
raise gr.Error(error_message)
|
| 84 |
|
| 85 |
|
| 86 |
@log_function_io
|
| 87 |
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
|
| 88 |
-
"""Wrapper para o upscale de resolução SeedVR.
|
| 89 |
if not state or not state.get("low_res_video"):
|
| 90 |
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
|
| 91 |
-
if not
|
| 92 |
raise gr.Error("Error: The SeedVR upscaling server is not available.")
|
| 93 |
-
|
| 94 |
try:
|
| 95 |
logging.info(f"[UI] Requesting SeedVR upscaling for video: {state.get('low_res_video')}")
|
| 96 |
def progress_wrapper(p, desc=""): progress(p, desc=desc)
|
| 97 |
-
|
| 98 |
-
output_filepath = seed_aduc_pipeline.run_inference(
|
| 99 |
file_path=state["low_res_video"], seed=int(seed), resolution=int(resolution),
|
| 100 |
batch_size=int(batch_size), fps=float(fps), progress=progress_wrapper
|
| 101 |
)
|
| 102 |
-
|
| 103 |
status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
|
| 104 |
logging.info(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
|
| 105 |
return gr.update(value=output_filepath), gr.update(value=status_message)
|
|
@@ -115,50 +139,56 @@ def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: in
|
|
| 115 |
def build_ui():
|
| 116 |
"""Constrói a interface completa do Gradio."""
|
| 117 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
|
| 118 |
-
app_state = gr.State(value={"low_res_video": None})
|
| 119 |
ui_components = {}
|
| 120 |
-
gr.Markdown("# ADUC-SDR Video Suite -
|
| 121 |
with gr.Row():
|
| 122 |
with gr.Column(scale=1): _build_generation_controls(ui_components)
|
| 123 |
with gr.Column(scale=1):
|
| 124 |
-
gr.Markdown("### Etapa 1: Vídeo Base Gerado
|
| 125 |
ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=False)
|
|
|
|
| 126 |
_build_postprod_controls(ui_components)
|
| 127 |
_register_event_handlers(app_state, ui_components)
|
| 128 |
return demo
|
| 129 |
|
| 130 |
def _build_generation_controls(ui: dict):
|
| 131 |
-
"""Constrói os componentes da UI
|
| 132 |
gr.Markdown("### Configurações de Geração")
|
| 133 |
-
ui['prompt'] = gr.Textbox(label="Prompt(s)
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
lines=4)
|
| 137 |
-
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
|
| 138 |
|
| 139 |
with gr.Accordion("Parâmetros Principais", open=True):
|
| 140 |
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
|
| 141 |
with gr.Row():
|
| 142 |
-
ui['height'] = gr.Slider(label="
|
| 143 |
-
ui['width'] = gr.Slider(label="
|
| 144 |
|
| 145 |
with gr.Accordion("Opções Avançadas LTX", open=False):
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
ui['fp_stg_scale_list'] = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]")
|
| 152 |
|
| 153 |
-
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo
|
| 154 |
|
| 155 |
def _build_postprod_controls(ui: dict):
|
| 156 |
-
"""Constrói os componentes da UI para a Etapa 2: Pós-Produção
|
| 157 |
with gr.Group(visible=False) as ui['post_prod_group']:
|
| 158 |
gr.Markdown("--- \n## Etapa 2: Pós-Produção")
|
| 159 |
with gr.Tabs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
|
| 161 |
-
is_seedvr_available =
|
| 162 |
if not is_seedvr_available:
|
| 163 |
gr.Markdown("🔴 **AVISO: O serviço SeedVR não está disponível.**")
|
| 164 |
with gr.Row():
|
|
@@ -174,20 +204,22 @@ def _build_postprod_controls(ui: dict):
|
|
| 174 |
|
| 175 |
def _register_event_handlers(app_state: gr.State, ui: dict):
|
| 176 |
"""Registra todos os manipuladores de eventos do Gradio."""
|
| 177 |
-
def
|
| 178 |
-
return
|
| 179 |
-
|
| 180 |
-
ui['fp_guidance_preset'].change(fn=toggle_custom_guidance, inputs=ui['fp_guidance_preset'], outputs=ui['custom_guidance_group'])
|
| 181 |
|
| 182 |
gen_inputs = [
|
| 183 |
-
ui['prompt'], ui['start_image'],
|
| 184 |
ui['height'], ui['width'], ui['duration'],
|
| 185 |
-
ui['
|
| 186 |
-
ui['fp_num_inference_steps'],
|
| 187 |
]
|
| 188 |
gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
|
| 189 |
|
| 190 |
-
ui['generate_low_btn'].click(fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
|
| 193 |
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
|
|
@@ -197,7 +229,15 @@ def _register_event_handlers(app_state: gr.State, ui: dict):
|
|
| 197 |
# ==============================================================================
|
| 198 |
# --- PONTO DE ENTRADA DA APLICAÇÃO ---
|
| 199 |
# ==============================================================================
|
| 200 |
-
|
| 201 |
if __name__ == "__main__":
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# FILE: app.py
|
| 2 |
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
|
| 3 |
+
# This version is updated to import from the new modular file structure,
|
| 4 |
+
# including the renamed ADUC pipelines and moved managers.
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import traceback
|
| 8 |
import sys
|
| 9 |
import os
|
| 10 |
import logging
|
| 11 |
+
from typing import List
|
| 12 |
+
from PIL import Image as PILImage
|
| 13 |
|
| 14 |
# ==============================================================================
|
| 15 |
+
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS (CAMINHOS ATUALIZADOS) ---
|
| 16 |
# ==============================================================================
|
| 17 |
|
| 18 |
+
try:
|
| 19 |
+
# Importa o serviço principal do seu novo local e nome
|
| 20 |
+
from api.ltx.ltx_aduc_pipeline import video_generation_service
|
|
|
|
| 21 |
|
| 22 |
+
# Importa o decorador de logging do seu novo local
|
| 23 |
+
from api.utils.debug_utils import log_function_io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# A importação do SeedVR permanece a mesma, mas verificamos sua existência
|
| 26 |
+
from api.seedvr_server import seedvr_server_singleton as seedvr_inference_server
|
| 27 |
+
|
| 28 |
+
logging.info("All backend services and utils imported successfully from new paths.")
|
| 29 |
+
|
| 30 |
+
except ImportError as e:
|
| 31 |
+
def log_function_io(func): return func
|
| 32 |
+
logging.warning(f"Could not import a module. Some services or debug logs may be unavailable. Details: {e}")
|
| 33 |
+
if 'video_generation_service' not in locals():
|
| 34 |
+
logging.critical(f"FATAL: Main LTX service (ltx_aduc_pipeline) failed to import.", exc_info=True)
|
| 35 |
+
sys.exit(1)
|
| 36 |
+
if 'seedvr_inference_server' not in locals():
|
| 37 |
+
seedvr_inference_server = None
|
| 38 |
+
logging.warning("SeedVR server could not be initialized. Upscaling tab will be disabled.")
|
| 39 |
+
except Exception as e:
|
| 40 |
+
logging.critical(f"FATAL ERROR during backend initialization. Details: {e}", exc_info=True)
|
| 41 |
+
sys.exit(1)
|
| 42 |
|
| 43 |
# ==============================================================================
|
| 44 |
# --- FUNÇÕES WRAPPER (PONTE ENTRE UI E BACKEND) ---
|
| 45 |
# ==============================================================================
|
| 46 |
|
| 47 |
@log_function_io
|
| 48 |
+
def run_generate_base_video(
|
| 49 |
+
prompt: str, neg_prompt: str, start_img: PILImage.Image,
|
| 50 |
height: int, width: int, duration: float,
|
| 51 |
+
fp_num_inference_steps: int, fp_skip_initial_steps: int, fp_skip_final_steps: int,
|
|
|
|
| 52 |
progress=gr.Progress(track_tqdm=True)
|
| 53 |
) -> tuple:
|
| 54 |
"""
|
| 55 |
+
Wrapper final que prepara os dados da UI e chama o backend com a API simplificada.
|
| 56 |
"""
|
| 57 |
try:
|
| 58 |
+
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
|
| 59 |
+
if not prompt_list:
|
| 60 |
+
raise gr.Error("O campo de prompt não pode estar vazio.")
|
| 61 |
+
logging.info(f"[UI] Request received with {len(prompt_list)} scene(s).")
|
| 62 |
+
|
| 63 |
+
initial_media_list = []
|
| 64 |
+
if start_img:
|
| 65 |
+
initial_media_list.append((start_img, 0, 1.0))
|
| 66 |
+
|
| 67 |
ltx_configs = {
|
| 68 |
+
"num_inference_steps": fp_num_inference_steps,
|
| 69 |
+
"skip_initial_inference_steps": fp_skip_initial_steps,
|
| 70 |
+
"skip_final_inference_steps": fp_skip_final_steps,
|
|
|
|
| 71 |
}
|
| 72 |
|
| 73 |
+
video_path, tensor_path, final_seed = video_generation_service.generate_low_resolution(
|
| 74 |
+
prompt_list=prompt_list,
|
| 75 |
+
negative_prompt=neg_prompt,
|
| 76 |
+
height=height, width=width, duration=duration,
|
| 77 |
+
initial_media_items=initial_media_list,
|
| 78 |
+
ltx_configs_override=ltx_configs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
)
|
| 80 |
|
| 81 |
+
if not video_path: raise RuntimeError("Backend failed to return a valid video path.")
|
| 82 |
+
new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed}
|
| 83 |
+
logging.info(f"[UI] Base video generation successful. Seed used: {final_seed}, Path: {video_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
return video_path, new_state, gr.update(visible=True)
|
| 85 |
|
| 86 |
except Exception as e:
|
| 87 |
+
error_message = f"❌ An error occurred during base generation:\n{e}"
|
| 88 |
+
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
|
| 89 |
+
raise gr.Error(error_message)
|
| 90 |
+
|
| 91 |
+
@log_function_io
|
| 92 |
+
def run_ltx_refinement(state: dict, prompt: str, neg_prompt: str, progress=gr.Progress(track_tqdm=True)) -> tuple:
|
| 93 |
+
"""Wrapper para o refinamento de textura LTX."""
|
| 94 |
+
if not state or not state.get("low_res_latents"):
|
| 95 |
+
raise gr.Error("Error: Please generate a base video in Step 1 before refining.")
|
| 96 |
+
try:
|
| 97 |
+
logging.info(f"[UI] Requesting LTX refinement for latents: {state.get('low_res_latents')}")
|
| 98 |
+
video_path, tensor_path = video_generation_service.generate_upscale_denoise(
|
| 99 |
+
latents_path=state["low_res_latents"],
|
| 100 |
+
prompt=prompt, negative_prompt=neg_prompt,
|
| 101 |
+
seed=state["used_seed"]
|
| 102 |
+
)
|
| 103 |
+
state["refined_video_ltx"] = video_path
|
| 104 |
+
state["refined_latents_ltx"] = tensor_path
|
| 105 |
+
logging.info(f"[UI] LTX refinement successful. Path: {video_path}")
|
| 106 |
+
return video_path, state
|
| 107 |
+
except Exception as e:
|
| 108 |
+
error_message = f"❌ An error occurred during LTX Refinement:\n{e}"
|
| 109 |
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
|
| 110 |
raise gr.Error(error_message)
|
| 111 |
|
| 112 |
|
| 113 |
@log_function_io
|
| 114 |
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
|
| 115 |
+
"""Wrapper para o upscale de resolução SeedVR."""
|
| 116 |
if not state or not state.get("low_res_video"):
|
| 117 |
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
|
| 118 |
+
if not seedvr_inference_server:
|
| 119 |
raise gr.Error("Error: The SeedVR upscaling server is not available.")
|
|
|
|
| 120 |
try:
|
| 121 |
logging.info(f"[UI] Requesting SeedVR upscaling for video: {state.get('low_res_video')}")
|
| 122 |
def progress_wrapper(p, desc=""): progress(p, desc=desc)
|
| 123 |
+
output_filepath = seedvr_inference_server.run_inference(
|
|
|
|
| 124 |
file_path=state["low_res_video"], seed=int(seed), resolution=int(resolution),
|
| 125 |
batch_size=int(batch_size), fps=float(fps), progress=progress_wrapper
|
| 126 |
)
|
|
|
|
| 127 |
status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
|
| 128 |
logging.info(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
|
| 129 |
return gr.update(value=output_filepath), gr.update(value=status_message)
|
|
|
|
| 139 |
def build_ui():
|
| 140 |
"""Constrói a interface completa do Gradio."""
|
| 141 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
|
| 142 |
+
app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None})
|
| 143 |
ui_components = {}
|
| 144 |
+
gr.Markdown("# ADUC-SDR Video Suite - LTX & SeedVR Workflow", elem_id="main-title")
|
| 145 |
with gr.Row():
|
| 146 |
with gr.Column(scale=1): _build_generation_controls(ui_components)
|
| 147 |
with gr.Column(scale=1):
|
| 148 |
+
gr.Markdown("### Etapa 1: Vídeo Base Gerado")
|
| 149 |
ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=False)
|
| 150 |
+
ui_components['used_seed_display'] = gr.Textbox(label="Seed Utilizada", interactive=False)
|
| 151 |
_build_postprod_controls(ui_components)
|
| 152 |
_register_event_handlers(app_state, ui_components)
|
| 153 |
return demo
|
| 154 |
|
| 155 |
def _build_generation_controls(ui: dict):
|
| 156 |
+
"""Constrói os componentes da UI, sem seleção de modo."""
|
| 157 |
gr.Markdown("### Configurações de Geração")
|
| 158 |
+
ui['prompt'] = gr.Textbox(label="Prompt(s)", info="Para múltiplas cenas (modo narrativo), escreva um prompt por linha.", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4)
|
| 159 |
+
ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed", lines=2)
|
| 160 |
+
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="pil", sources=["upload"])
|
|
|
|
|
|
|
| 161 |
|
| 162 |
with gr.Accordion("Parâmetros Principais", open=True):
|
| 163 |
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
|
| 164 |
with gr.Row():
|
| 165 |
+
ui['height'] = gr.Slider(label="Height", value=432, step=8, minimum=256, maximum=1024)
|
| 166 |
+
ui['width'] = gr.Slider(label="Width", value=768, step=8, minimum=256, maximum=1024)
|
| 167 |
|
| 168 |
with gr.Accordion("Opções Avançadas LTX", open=False):
|
| 169 |
+
gr.Markdown("#### Configurações de Passos de Inferência")
|
| 170 |
+
gr.Markdown("*Deixe o valor padrão (ex: 20) ou 0 para usar a configuração do `config.yaml`.*")
|
| 171 |
+
ui['fp_num_inference_steps'] = gr.Slider(label="Número de Passos", minimum=0, maximum=100, step=1, value=20, info="Padrão LTX: 20.")
|
| 172 |
+
ui['fp_skip_initial_steps'] = gr.Slider(label="Pular Passos Iniciais", minimum=0, maximum=100, step=1, value=0)
|
| 173 |
+
ui['fp_skip_final_steps'] = gr.Slider(label="Pular Passos Finais", minimum=0, maximum=100, step=1, value=0)
|
|
|
|
| 174 |
|
| 175 |
+
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary")
|
| 176 |
|
| 177 |
def _build_postprod_controls(ui: dict):
|
| 178 |
+
"""Constrói os componentes da UI para a Etapa 2: Pós-Produção."""
|
| 179 |
with gr.Group(visible=False) as ui['post_prod_group']:
|
| 180 |
gr.Markdown("--- \n## Etapa 2: Pós-Produção")
|
| 181 |
with gr.Tabs():
|
| 182 |
+
with gr.TabItem("🚀 Upscaler de Textura (LTX)"):
|
| 183 |
+
with gr.Row():
|
| 184 |
+
with gr.Column(scale=1):
|
| 185 |
+
gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.")
|
| 186 |
+
ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary")
|
| 187 |
+
with gr.Column(scale=1):
|
| 188 |
+
ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False)
|
| 189 |
+
|
| 190 |
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
|
| 191 |
+
is_seedvr_available = seedvr_inference_server is not None
|
| 192 |
if not is_seedvr_available:
|
| 193 |
gr.Markdown("🔴 **AVISO: O serviço SeedVR não está disponível.**")
|
| 194 |
with gr.Row():
|
|
|
|
| 204 |
|
| 205 |
def _register_event_handlers(app_state: gr.State, ui: dict):
|
| 206 |
"""Registra todos os manipuladores de eventos do Gradio."""
|
| 207 |
+
def update_seed_display(state):
|
| 208 |
+
return state.get("used_seed", "N/A")
|
|
|
|
|
|
|
| 209 |
|
| 210 |
gen_inputs = [
|
| 211 |
+
ui['prompt'], ui['neg_prompt'], ui['start_image'],
|
| 212 |
ui['height'], ui['width'], ui['duration'],
|
| 213 |
+
ui['fp_num_inference_steps'], ui['fp_skip_initial_steps'], ui['fp_skip_final_steps'],
|
|
|
|
| 214 |
]
|
| 215 |
gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
|
| 216 |
|
| 217 |
+
(ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs)
|
| 218 |
+
.then(fn=update_seed_display, inputs=[app_state], outputs=[ui['used_seed_display']]))
|
| 219 |
+
|
| 220 |
+
refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']]
|
| 221 |
+
refine_outputs = [ui['ltx_refined_video_output'], app_state]
|
| 222 |
+
ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs)
|
| 223 |
|
| 224 |
if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
|
| 225 |
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
|
|
|
|
| 229 |
# ==============================================================================
|
| 230 |
# --- PONTO DE ENTRADA DA APLICAÇÃO ---
|
| 231 |
# ==============================================================================
|
|
|
|
| 232 |
if __name__ == "__main__":
|
| 233 |
+
log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper()
|
| 234 |
+
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')
|
| 235 |
+
|
| 236 |
+
print("Building Gradio UI...")
|
| 237 |
+
gradio_app = build_ui()
|
| 238 |
+
print("Launching Gradio app...")
|
| 239 |
+
gradio_app.queue().launch(
|
| 240 |
+
server_name=os.getenv("GRADIO_SERVER_NAME", "0.0.0.0"),
|
| 241 |
+
server_port=int(os.getenv("GRADIO_SERVER_PORT", "7860")),
|
| 242 |
+
show_error=True
|
| 243 |
+
)
|