Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,36 +1,41 @@
|
|
| 1 |
# FILE: app.py
|
| 2 |
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
|
| 3 |
-
#
|
| 4 |
-
#
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import traceback
|
| 8 |
import sys
|
| 9 |
import os
|
| 10 |
import logging
|
|
|
|
| 11 |
|
| 12 |
# ==============================================================================
|
| 13 |
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS ---
|
| 14 |
# ==============================================================================
|
| 15 |
|
| 16 |
try:
|
| 17 |
-
#
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Nosso decorador de logging para depuração
|
| 21 |
from utils.debug_utils import log_function_io
|
| 22 |
-
|
| 23 |
-
# Serviço especialista para upscaling de resolução (SeedVR)
|
| 24 |
-
from api.seedvr.seed_aduc_pipeline import seed_aduc_pipeline
|
| 25 |
|
| 26 |
-
logging.info("All backend services (
|
| 27 |
|
| 28 |
except ImportError as e:
|
|
|
|
| 29 |
def log_function_io(func): return func
|
| 30 |
-
logging.warning(f"Could not import a module
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
sys.exit(1)
|
|
|
|
| 34 |
if 'seed_aduc_pipeline' not in locals():
|
| 35 |
seed_aduc_pipeline = None
|
| 36 |
logging.warning("SeedVR server could not be initialized. The SeedVR upscaling tab will be disabled.")
|
|
@@ -43,77 +48,58 @@ except Exception as e:
|
|
| 43 |
# ==============================================================================
|
| 44 |
|
| 45 |
@log_function_io
|
| 46 |
-
def
|
| 47 |
-
|
| 48 |
height: int, width: int, duration: float,
|
| 49 |
fp_guidance_preset: str, fp_guidance_scale_list: str, fp_stg_scale_list: str,
|
| 50 |
-
fp_num_inference_steps: int,
|
| 51 |
progress=gr.Progress(track_tqdm=True)
|
| 52 |
) -> tuple:
|
| 53 |
-
"""
|
|
|
|
|
|
|
| 54 |
try:
|
| 55 |
-
logging.info(
|
| 56 |
|
| 57 |
-
|
| 58 |
-
if start_img:
|
| 59 |
-
num_frames_estimate = int(duration * 24)
|
| 60 |
-
items_list = [[start_img, 0, 1.0]]
|
| 61 |
-
initial_conditions = ltx_aduc_pipeline.prepare_condition_items(
|
| 62 |
-
items_list, height, width, num_frames_estimate
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
ltx_configs = {
|
| 66 |
"guidance_preset": fp_guidance_preset,
|
| 67 |
"guidance_scale_list": fp_guidance_scale_list,
|
| 68 |
"stg_scale_list": fp_stg_scale_list,
|
| 69 |
-
"num_inference_steps": fp_num_inference_steps
|
| 70 |
-
"skip_initial_inference_steps": fp_skip_initial_steps,
|
| 71 |
-
"skip_final_inference_steps": fp_skip_final_steps,
|
| 72 |
}
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
-
if not video_path:
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
| 84 |
return video_path, new_state, gr.update(visible=True)
|
| 85 |
|
| 86 |
except Exception as e:
|
| 87 |
-
error_message = f"❌ An error occurred during
|
| 88 |
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
|
| 89 |
raise gr.Error(error_message)
|
| 90 |
|
| 91 |
-
@log_function_io
|
| 92 |
-
def run_ltx_refinement(state: dict, prompt: str, neg_prompt: str, progress=gr.Progress(track_tqdm=True)) -> tuple:
|
| 93 |
-
"""Wrapper para o refinamento de textura LTX."""
|
| 94 |
-
if not state or not state.get("low_res_latents"):
|
| 95 |
-
raise gr.Error("Error: Please generate a base video in Step 1 before refining.")
|
| 96 |
-
|
| 97 |
-
try:
|
| 98 |
-
logging.info(f"[UI] Requesting LTX refinement for latents: {state.get('low_res_latents')}")
|
| 99 |
-
video_path, tensor_path = ltx_aduc_pipeline.generate_upscale_denoise(
|
| 100 |
-
latents_path=state["low_res_latents"],
|
| 101 |
-
prompt=prompt,
|
| 102 |
-
negative_prompt=neg_prompt,
|
| 103 |
-
seed=state["used_seed"]
|
| 104 |
-
)
|
| 105 |
-
state["refined_video_ltx"] = video_path
|
| 106 |
-
state["refined_latents_ltx"] = tensor_path
|
| 107 |
-
logging.info(f"[UI] LTX refinement successful. Path: {video_path}")
|
| 108 |
-
return video_path, state
|
| 109 |
-
except Exception as e:
|
| 110 |
-
error_message = f"❌ An error occurred during LTX Refinement:\n{e}"
|
| 111 |
-
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
|
| 112 |
-
raise gr.Error(error_message)
|
| 113 |
|
| 114 |
@log_function_io
|
| 115 |
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
|
| 116 |
-
"""Wrapper para o upscale de resolução SeedVR."""
|
| 117 |
if not state or not state.get("low_res_video"):
|
| 118 |
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
|
| 119 |
if not seed_aduc_pipeline:
|
|
@@ -143,15 +129,14 @@ def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: in
|
|
| 143 |
def build_ui():
|
| 144 |
"""Constrói a interface completa do Gradio."""
|
| 145 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
|
| 146 |
-
app_state = gr.State(value={"low_res_video": None
|
| 147 |
ui_components = {}
|
| 148 |
-
gr.Markdown("# ADUC-SDR Video Suite -
|
| 149 |
with gr.Row():
|
| 150 |
with gr.Column(scale=1): _build_generation_controls(ui_components)
|
| 151 |
with gr.Column(scale=1):
|
| 152 |
-
gr.Markdown("### Etapa 1: Vídeo Base Gerado")
|
| 153 |
ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=False)
|
| 154 |
-
ui_components['used_seed_display'] = gr.Textbox(label="Seed Utilizada", interactive=False)
|
| 155 |
_build_postprod_controls(ui_components)
|
| 156 |
_register_event_handlers(app_state, ui_components)
|
| 157 |
return demo
|
|
@@ -159,46 +144,33 @@ def build_ui():
|
|
| 159 |
def _build_generation_controls(ui: dict):
|
| 160 |
"""Constrói os componentes da UI para a Etapa 1: Geração."""
|
| 161 |
gr.Markdown("### Configurações de Geração")
|
| 162 |
-
ui['
|
| 163 |
-
|
| 164 |
-
|
|
|
|
| 165 |
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
|
| 166 |
|
| 167 |
with gr.Accordion("Parâmetros Principais", open=True):
|
| 168 |
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
|
| 169 |
with gr.Row():
|
| 170 |
-
ui['height'] = gr.Slider(label="
|
| 171 |
-
ui['width'] = gr.Slider(label="
|
| 172 |
|
| 173 |
with gr.Accordion("Opções Avançadas LTX", open=False):
|
| 174 |
-
gr.
|
| 175 |
-
gr.
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
with gr.TabItem("Configurações de Guiagem (First Pass)"):
|
| 181 |
-
ui['fp_guidance_preset'] = gr.Dropdown(label="Preset de Guiagem", choices=["Padrão (Recomendado)", "Agressivo", "Suave", "Customizado"], value="Padrão (Recomendado)", info="Controla o comportamento da guiagem durante a difusão.")
|
| 182 |
-
with gr.Group(visible=False) as ui['custom_guidance_group']:
|
| 183 |
-
gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1.0, 2.5, 3.0]`")
|
| 184 |
-
ui['fp_guidance_scale_list'] = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]")
|
| 185 |
-
ui['fp_stg_scale_list'] = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]")
|
| 186 |
|
| 187 |
-
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo
|
| 188 |
|
| 189 |
def _build_postprod_controls(ui: dict):
|
| 190 |
-
"""Constrói os componentes da UI para a Etapa 2: Pós-Produção."""
|
| 191 |
with gr.Group(visible=False) as ui['post_prod_group']:
|
| 192 |
gr.Markdown("--- \n## Etapa 2: Pós-Produção")
|
| 193 |
with gr.Tabs():
|
| 194 |
-
with gr.TabItem("🚀 Upscaler de Textura (LTX)"):
|
| 195 |
-
with gr.Row():
|
| 196 |
-
with gr.Column(scale=1):
|
| 197 |
-
gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.")
|
| 198 |
-
ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary")
|
| 199 |
-
with gr.Column(scale=1):
|
| 200 |
-
ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False)
|
| 201 |
-
|
| 202 |
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
|
| 203 |
is_seedvr_available = seed_aduc_pipeline is not None
|
| 204 |
if not is_seedvr_available:
|
|
@@ -221,23 +193,15 @@ def _register_event_handlers(app_state: gr.State, ui: dict):
|
|
| 221 |
|
| 222 |
ui['fp_guidance_preset'].change(fn=toggle_custom_guidance, inputs=ui['fp_guidance_preset'], outputs=ui['custom_guidance_group'])
|
| 223 |
|
| 224 |
-
def update_seed_display(state):
|
| 225 |
-
return state.get("used_seed", "N/A")
|
| 226 |
-
|
| 227 |
gen_inputs = [
|
| 228 |
-
ui['
|
| 229 |
ui['height'], ui['width'], ui['duration'],
|
| 230 |
ui['fp_guidance_preset'], ui['fp_guidance_scale_list'], ui['fp_stg_scale_list'],
|
| 231 |
-
ui['fp_num_inference_steps'],
|
| 232 |
]
|
| 233 |
gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
|
| 234 |
|
| 235 |
-
|
| 236 |
-
.then(fn=update_seed_display, inputs=[app_state], outputs=[ui['used_seed_display']]))
|
| 237 |
-
|
| 238 |
-
refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']]
|
| 239 |
-
refine_outputs = [ui['ltx_refined_video_output'], app_state]
|
| 240 |
-
ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs)
|
| 241 |
|
| 242 |
if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
|
| 243 |
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
|
|
|
|
| 1 |
# FILE: app.py
|
| 2 |
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
|
| 3 |
+
# This version is refactored to use the central LtxAducOrchestrator, simplifying the UI logic
|
| 4 |
+
# and making it a pure client of the backend services.
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import traceback
|
| 8 |
import sys
|
| 9 |
import os
|
| 10 |
import logging
|
| 11 |
+
from PIL import Image
|
| 12 |
|
| 13 |
# ==============================================================================
|
| 14 |
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS ---
|
| 15 |
# ==============================================================================
|
| 16 |
|
| 17 |
try:
|
| 18 |
+
# --- MUDANÇA PRINCIPAL: Importamos apenas o ORQUESTRADOR ---
|
| 19 |
+
# O orquestrador é agora nosso único ponto de entrada para a geração de vídeo.
|
| 20 |
+
from api.ltx_aduc_orchestrator import ltx_aduc_orchestrator
|
| 21 |
+
|
| 22 |
+
# O SeedVR (upscaler de resolução) ainda é um serviço separado que pode ser chamado após a geração.
|
| 23 |
+
from api.seedvr.seed_aduc_pipeline import seed_aduc_pipeline
|
| 24 |
|
| 25 |
# Nosso decorador de logging para depuração
|
| 26 |
from utils.debug_utils import log_function_io
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
logging.info("All backend services (Orchestrator, SeedVR) and debug utils imported successfully.")
|
| 29 |
|
| 30 |
except ImportError as e:
|
| 31 |
+
# Lógica de falha para o decorador de log
|
| 32 |
def log_function_io(func): return func
|
| 33 |
+
logging.warning(f"Could not import a module. Debug logger might be disabled. Details: {e}")
|
| 34 |
+
# Verifica se o orquestrador, que é CRÍTICO, falhou ao importar.
|
| 35 |
+
if 'ltx_aduc_orchestrator' not in locals() or ltx_aduc_orchestrator is None:
|
| 36 |
+
logging.critical(f"FATAL: Main Orchestrator service failed to import or initialize.", exc_info=True)
|
| 37 |
sys.exit(1)
|
| 38 |
+
# SeedVR é opcional, então apenas avisamos se ele falhar.
|
| 39 |
if 'seed_aduc_pipeline' not in locals():
|
| 40 |
seed_aduc_pipeline = None
|
| 41 |
logging.warning("SeedVR server could not be initialized. The SeedVR upscaling tab will be disabled.")
|
|
|
|
| 48 |
# ==============================================================================
|
| 49 |
|
| 50 |
@log_function_io
|
| 51 |
+
def run_orchestrated_generation(
|
| 52 |
+
prompt: str, start_img_path: str,
|
| 53 |
height: int, width: int, duration: float,
|
| 54 |
fp_guidance_preset: str, fp_guidance_scale_list: str, fp_stg_scale_list: str,
|
| 55 |
+
fp_num_inference_steps: int,
|
| 56 |
progress=gr.Progress(track_tqdm=True)
|
| 57 |
) -> tuple:
|
| 58 |
+
"""
|
| 59 |
+
Função wrapper simplificada que coleta dados da UI e chama o orquestrador principal.
|
| 60 |
+
"""
|
| 61 |
try:
|
| 62 |
+
logging.info("[UI] Request received. Submitting job to the main orchestrator...")
|
| 63 |
|
| 64 |
+
# Monta o dicionário de configurações avançadas LTX a partir da UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
ltx_configs = {
|
| 66 |
"guidance_preset": fp_guidance_preset,
|
| 67 |
"guidance_scale_list": fp_guidance_scale_list,
|
| 68 |
"stg_scale_list": fp_stg_scale_list,
|
| 69 |
+
"num_inference_steps": fp_num_inference_steps
|
|
|
|
|
|
|
| 70 |
}
|
| 71 |
|
| 72 |
+
# Carrega a imagem inicial para um objeto PIL, que é o que o orquestrador espera.
|
| 73 |
+
initial_image_pil = Image.open(start_img_path).convert("RGB") if start_img_path else None
|
| 74 |
+
|
| 75 |
+
# --- CHAMADA ÚNICA E LIMPA PARA O ORQUESTRADOR ---
|
| 76 |
+
video_path = ltx_aduc_orchestrator(
|
| 77 |
+
prompt=prompt,
|
| 78 |
+
initial_image=initial_image_pil,
|
| 79 |
+
height=height,
|
| 80 |
+
width=width,
|
| 81 |
+
duration_in_seconds=duration,
|
| 82 |
+
ltx_configs=ltx_configs
|
| 83 |
)
|
| 84 |
|
| 85 |
+
if not video_path:
|
| 86 |
+
raise RuntimeError("Orchestrator failed to return a valid video path. Check backend logs for details.")
|
| 87 |
|
| 88 |
+
logging.info(f"[UI] Orchestrator job successful. Video path: {video_path}")
|
| 89 |
+
|
| 90 |
+
# O estado agora pode ser mais simples, apenas guardando o caminho do vídeo gerado para o próximo passo (SeedVR).
|
| 91 |
+
new_state = {"low_res_video": video_path}
|
| 92 |
return video_path, new_state, gr.update(visible=True)
|
| 93 |
|
| 94 |
except Exception as e:
|
| 95 |
+
error_message = f"❌ An error occurred during the orchestrated generation:\n{e}"
|
| 96 |
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
|
| 97 |
raise gr.Error(error_message)
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
@log_function_io
|
| 101 |
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
|
| 102 |
+
"""Wrapper para o upscale de resolução SeedVR. Esta função permanece a mesma."""
|
| 103 |
if not state or not state.get("low_res_video"):
|
| 104 |
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
|
| 105 |
if not seed_aduc_pipeline:
|
|
|
|
| 129 |
def build_ui():
|
| 130 |
"""Constrói a interface completa do Gradio."""
|
| 131 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
|
| 132 |
+
app_state = gr.State(value={"low_res_video": None})
|
| 133 |
ui_components = {}
|
| 134 |
+
gr.Markdown("# ADUC-SDR Video Suite - Orchestrated Workflow", elem_id="main-title")
|
| 135 |
with gr.Row():
|
| 136 |
with gr.Column(scale=1): _build_generation_controls(ui_components)
|
| 137 |
with gr.Column(scale=1):
|
| 138 |
+
gr.Markdown("### Etapa 1: Vídeo Base Gerado pelo Orquestrador")
|
| 139 |
ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=False)
|
|
|
|
| 140 |
_build_postprod_controls(ui_components)
|
| 141 |
_register_event_handlers(app_state, ui_components)
|
| 142 |
return demo
|
|
|
|
| 144 |
def _build_generation_controls(ui: dict):
|
| 145 |
"""Constrói os componentes da UI para a Etapa 1: Geração."""
|
| 146 |
gr.Markdown("### Configurações de Geração")
|
| 147 |
+
ui['prompt'] = gr.Textbox(label="Prompt(s) de Geração",
|
| 148 |
+
info="Escreva sua história. Cada nova linha será tratada como uma nova cena.",
|
| 149 |
+
value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte",
|
| 150 |
+
lines=4)
|
| 151 |
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
|
| 152 |
|
| 153 |
with gr.Accordion("Parâmetros Principais", open=True):
|
| 154 |
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
|
| 155 |
with gr.Row():
|
| 156 |
+
ui['height'] = gr.Slider(label="Altura", value=432, step=8, minimum=256, maximum=1024)
|
| 157 |
+
ui['width'] = gr.Slider(label="Largura", value=768, step=8, minimum=256, maximum=1024)
|
| 158 |
|
| 159 |
with gr.Accordion("Opções Avançadas LTX", open=False):
|
| 160 |
+
ui['fp_num_inference_steps'] = gr.Slider(label="Número de Passos", minimum=1, maximum=100, step=1, value=20)
|
| 161 |
+
ui['fp_guidance_preset'] = gr.Dropdown(label="Preset de Guiagem", choices=["Padrão (Recomendado)", "Customizado"], value="Padrão (Recomendado)")
|
| 162 |
+
with gr.Group(visible=False) as ui['custom_guidance_group']:
|
| 163 |
+
gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1.0, 2.5, 3.0]`")
|
| 164 |
+
ui['fp_guidance_scale_list'] = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]")
|
| 165 |
+
ui['fp_stg_scale_list'] = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo via Orquestrador", variant="primary")
|
| 168 |
|
| 169 |
def _build_postprod_controls(ui: dict):
|
| 170 |
+
"""Constrói os componentes da UI para a Etapa 2: Pós-Produção (Upscaling)."""
|
| 171 |
with gr.Group(visible=False) as ui['post_prod_group']:
|
| 172 |
gr.Markdown("--- \n## Etapa 2: Pós-Produção")
|
| 173 |
with gr.Tabs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
|
| 175 |
is_seedvr_available = seed_aduc_pipeline is not None
|
| 176 |
if not is_seedvr_available:
|
|
|
|
| 193 |
|
| 194 |
ui['fp_guidance_preset'].change(fn=toggle_custom_guidance, inputs=ui['fp_guidance_preset'], outputs=ui['custom_guidance_group'])
|
| 195 |
|
|
|
|
|
|
|
|
|
|
| 196 |
gen_inputs = [
|
| 197 |
+
ui['prompt'], ui['start_image'],
|
| 198 |
ui['height'], ui['width'], ui['duration'],
|
| 199 |
ui['fp_guidance_preset'], ui['fp_guidance_scale_list'], ui['fp_stg_scale_list'],
|
| 200 |
+
ui['fp_num_inference_steps'],
|
| 201 |
]
|
| 202 |
gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
|
| 203 |
|
| 204 |
+
ui['generate_low_btn'].click(fn=run_orchestrated_generation, inputs=gen_inputs, outputs=gen_outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
|
| 207 |
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
|