Spaces:
Paused
Paused
Create ltx_utils.py
Browse files- api/ltx/ltx_utils.py +203 -0
api/ltx/ltx_utils.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# FILE: api/ltx/ltx_utils.py
|
| 2 |
+
# DESCRIPTION: Comprehensive, self-contained utility module for the LTX pipeline.
|
| 3 |
+
# Handles dependency path injection, model loading, data structures, and helper functions.
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import random
|
| 7 |
+
import json
|
| 8 |
+
import logging
|
| 9 |
+
import time
|
| 10 |
+
import sys
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from typing import Dict, Optional, Tuple, Union
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
from enum import Enum, auto
|
| 15 |
+
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
import torchvision.transforms.functional as TVF
|
| 19 |
+
from PIL import Image
|
| 20 |
+
from safetensors import safe_open
|
| 21 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
| 22 |
+
|
| 23 |
+
# ==============================================================================
|
| 24 |
+
# --- CRITICAL: DEPENDENCY PATH INJECTION ---
|
| 25 |
+
# ==============================================================================
|
| 26 |
+
|
| 27 |
+
# Define o caminho para o repositório clonado
|
| 28 |
+
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 29 |
+
|
| 30 |
+
def add_deps_to_path():
|
| 31 |
+
"""
|
| 32 |
+
Adiciona o diretório do repositório LTX ao sys.path para garantir que suas
|
| 33 |
+
bibliotecas possam ser importadas.
|
| 34 |
+
"""
|
| 35 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 36 |
+
if repo_path not in sys.path:
|
| 37 |
+
sys.path.insert(0, repo_path)
|
| 38 |
+
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 39 |
+
|
| 40 |
+
# Executa a função imediatamente para configurar o ambiente antes de qualquer importação.
|
| 41 |
+
add_deps_to_path()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# --- Importações da Biblioteca LTX-Video (Agora devem funcionar) ---
|
| 45 |
+
try:
|
| 46 |
+
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 47 |
+
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
|
| 48 |
+
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 49 |
+
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 50 |
+
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 51 |
+
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 52 |
+
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
|
| 53 |
+
import ltx_video.pipelines.crf_compressor as crf_compressor
|
| 54 |
+
except ImportError as e:
|
| 55 |
+
raise ImportError(f"Could not import from LTX-Video library even after setting sys.path. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# ==============================================================================
|
| 59 |
+
# --- ESTRUTURAS DE DADOS E ENUMS (Centralizadas aqui) ---
|
| 60 |
+
# ==============================================================================
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
class ConditioningItem:
|
| 64 |
+
"""Defines a single frame-conditioning item, used to guide the generation pipeline."""
|
| 65 |
+
media_item: torch.Tensor
|
| 66 |
+
media_frame_number: int
|
| 67 |
+
conditioning_strength: float
|
| 68 |
+
media_x: Optional[int] = None
|
| 69 |
+
media_y: Optional[int] = None
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class SkipLayerStrategy(Enum):
|
| 73 |
+
"""Defines the strategy for how spatio-temporal guidance is applied."""
|
| 74 |
+
AttentionSkip = auto()
|
| 75 |
+
AttentionValues = auto()
|
| 76 |
+
Residual = auto()
|
| 77 |
+
TransformerBlock = auto()
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# ==============================================================================
|
| 81 |
+
# --- FUNÇÕES DE CONSTRUÇÃO DE MODELO E PIPELINE ---
|
| 82 |
+
# ==============================================================================
|
| 83 |
+
|
| 84 |
+
def create_latent_upsampler(latent_upsampler_model_path: str, device: str) -> LatentUpsampler:
|
| 85 |
+
"""Loads the Latent Upsampler model from a checkpoint path."""
|
| 86 |
+
logging.info(f"Loading Latent Upsampler from: {latent_upsampler_model_path} to device: {device}")
|
| 87 |
+
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
|
| 88 |
+
latent_upsampler.to(device)
|
| 89 |
+
latent_upsampler.eval()
|
| 90 |
+
return latent_upsampler
|
| 91 |
+
|
| 92 |
+
def build_ltx_pipeline_on_cpu(config: Dict) -> Tuple[LTXVideoPipeline, Optional[torch.nn.Module]]:
|
| 93 |
+
"""Builds the complete LTX pipeline and upsampler on the CPU."""
|
| 94 |
+
t0 = time.perf_counter()
|
| 95 |
+
logging.info("Building LTX pipeline on CPU...")
|
| 96 |
+
|
| 97 |
+
ckpt_path = Path(config["checkpoint_path"])
|
| 98 |
+
if not ckpt_path.is_file():
|
| 99 |
+
raise FileNotFoundError(f"Main checkpoint file not found: {ckpt_path}")
|
| 100 |
+
|
| 101 |
+
with safe_open(ckpt_path, framework="pt") as f:
|
| 102 |
+
metadata = f.metadata() or {}
|
| 103 |
+
config_str = metadata.get("config", "{}")
|
| 104 |
+
configs = json.loads(config_str)
|
| 105 |
+
allowed_inference_steps = configs.get("allowed_inference_steps")
|
| 106 |
+
|
| 107 |
+
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")
|
| 108 |
+
transformer = Transformer3DModel.from_pretrained(ckpt_path).to("cpu")
|
| 109 |
+
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
|
| 110 |
+
|
| 111 |
+
text_encoder_path = config["text_encoder_model_name_or_path"]
|
| 112 |
+
text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder").to("cpu")
|
| 113 |
+
tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer")
|
| 114 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
| 115 |
+
|
| 116 |
+
precision = config.get("precision", "bfloat16")
|
| 117 |
+
if precision == "bfloat16":
|
| 118 |
+
vae.to(torch.bfloat16)
|
| 119 |
+
transformer.to(torch.bfloat16)
|
| 120 |
+
text_encoder.to(torch.bfloat16)
|
| 121 |
+
|
| 122 |
+
pipeline = LTXVideoPipeline(
|
| 123 |
+
transformer=transformer, patchifier=patchifier, text_encoder=text_encoder,
|
| 124 |
+
tokenizer=tokenizer, scheduler=scheduler, vae=vae,
|
| 125 |
+
allowed_inference_steps=allowed_inference_steps,
|
| 126 |
+
prompt_enhancer_image_caption_model=None, prompt_enhancer_image_caption_processor=None,
|
| 127 |
+
prompt_enhancer_llm_model=None, prompt_enhancer_llm_tokenizer=None,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
latent_upsampler = None
|
| 131 |
+
if config.get("spatial_upscaler_model_path"):
|
| 132 |
+
spatial_path = config["spatial_upscaler_model_path"]
|
| 133 |
+
latent_upsampler = create_latent_upsampler(spatial_path, device="cpu")
|
| 134 |
+
if precision == "bfloat16":
|
| 135 |
+
latent_upsampler.to(torch.bfloat16)
|
| 136 |
+
|
| 137 |
+
logging.info(f"LTX pipeline built on CPU in {time.perf_counter() - t0:.2f}s")
|
| 138 |
+
return pipeline, latent_upsampler
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# ==============================================================================
|
| 142 |
+
# --- FUNÇÕES AUXILIARES (Latent Processing, Seed, Image Prep) ---
|
| 143 |
+
# ==============================================================================
|
| 144 |
+
|
| 145 |
+
def adain_filter_latent(
|
| 146 |
+
latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0
|
| 147 |
+
) -> torch.Tensor:
|
| 148 |
+
"""Applies AdaIN to transfer the style from a reference latent to another."""
|
| 149 |
+
result = latents.clone()
|
| 150 |
+
for i in range(latents.size(0)):
|
| 151 |
+
for c in range(latents.size(1)):
|
| 152 |
+
r_sd, r_mean = torch.std_mean(reference_latents[i, c], dim=None)
|
| 153 |
+
i_sd, i_mean = torch.std_mean(result[i, c], dim=None)
|
| 154 |
+
if i_sd > 1e-6:
|
| 155 |
+
result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean
|
| 156 |
+
return torch.lerp(latents, result, factor)
|
| 157 |
+
|
| 158 |
+
def seed_everything(seed: int):
|
| 159 |
+
"""Sets the seed for reproducibility."""
|
| 160 |
+
random.seed(seed)
|
| 161 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 162 |
+
np.random.seed(seed)
|
| 163 |
+
torch.manual_seed(seed)
|
| 164 |
+
torch.cuda.manual_seed_all(seed)
|
| 165 |
+
torch.backends.cudnn.deterministic = True
|
| 166 |
+
torch.backends.cudnn.benchmark = False
|
| 167 |
+
|
| 168 |
+
def load_image_to_tensor_with_resize_and_crop(
|
| 169 |
+
image_input: Union[str, Image.Image],
|
| 170 |
+
target_height: int,
|
| 171 |
+
target_width: int,
|
| 172 |
+
) -> torch.Tensor:
|
| 173 |
+
"""Loads and processes an image into a 5D tensor compatible with the LTX pipeline."""
|
| 174 |
+
if isinstance(image_input, str):
|
| 175 |
+
image = Image.open(image_input).convert("RGB")
|
| 176 |
+
elif isinstance(image_input, Image.Image):
|
| 177 |
+
image = image_input
|
| 178 |
+
else:
|
| 179 |
+
raise ValueError("image_input must be a file path or a PIL Image object")
|
| 180 |
+
|
| 181 |
+
input_width, input_height = image.size
|
| 182 |
+
aspect_ratio_target = target_width / target_height
|
| 183 |
+
aspect_ratio_frame = input_width / input_height
|
| 184 |
+
|
| 185 |
+
if aspect_ratio_frame > aspect_ratio_target:
|
| 186 |
+
new_width, new_height = int(input_height * aspect_ratio_target), input_height
|
| 187 |
+
x_start, y_start = (input_width - new_width) // 2, 0
|
| 188 |
+
else:
|
| 189 |
+
new_width, new_height = input_width, int(input_width / aspect_ratio_target)
|
| 190 |
+
x_start, y_start = 0, (input_height - new_height) // 2
|
| 191 |
+
|
| 192 |
+
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
|
| 193 |
+
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
|
| 194 |
+
|
| 195 |
+
frame_tensor = TVF.to_tensor(image)
|
| 196 |
+
frame_tensor = TVF.gaussian_blur(frame_tensor, kernel_size=(3, 3))
|
| 197 |
+
|
| 198 |
+
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
|
| 199 |
+
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
|
| 200 |
+
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
|
| 201 |
+
frame_tensor = (frame_tensor * 2.0) - 1.0
|
| 202 |
+
|
| 203 |
+
return frame_tensor.unsqueeze(0).unsqueeze(2)
|