Spaces:
Paused
Paused
Upload 5 files
Browse files- api/ltx/ltx_aduc_manager.py +148 -93
- api/ltx/ltx_aduc_orchestrator.py +58 -61
- api/ltx/ltx_aduc_pipeline.py +128 -101
- api/ltx/ltx_utils.py +102 -216
- api/ltx/vae_aduc_pipeline.py +40 -42
api/ltx/ltx_aduc_manager.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
# FILE: api/ltx/ltx_aduc_manager.py
|
| 2 |
-
# DESCRIPTION:
|
| 3 |
-
#
|
| 4 |
-
# while still respecting the GPU separation defined by the GPUManager.
|
| 5 |
|
| 6 |
import logging
|
| 7 |
import torch
|
|
@@ -10,14 +9,11 @@ from pathlib import Path
|
|
| 10 |
import threading
|
| 11 |
import queue
|
| 12 |
import time
|
| 13 |
-
import
|
| 14 |
-
import os
|
| 15 |
-
from huggingface_hub import hf_hub_download
|
| 16 |
-
from typing import List, Optional, Callable, Any, Tuple, Dict
|
| 17 |
|
| 18 |
-
#
|
|
|
|
| 19 |
from managers.gpu_manager import gpu_manager
|
| 20 |
-
from api.ltx.ltx_utils import build_complete_pipeline_on_cpu, create_transformer
|
| 21 |
|
| 22 |
# --- Adiciona o path do LTX-Video para importação de tipos ---
|
| 23 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
@@ -28,138 +24,168 @@ def add_deps_to_path():
|
|
| 28 |
add_deps_to_path()
|
| 29 |
|
| 30 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
|
|
|
| 31 |
|
| 32 |
# ==============================================================================
|
| 33 |
-
# ---
|
| 34 |
# ==============================================================================
|
| 35 |
|
| 36 |
-
|
| 37 |
-
"""
|
| 38 |
-
|
| 39 |
-
"""
|
| 40 |
-
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 41 |
-
with open(config_path, "r") as file:
|
| 42 |
-
config = yaml.safe_load(file)
|
| 43 |
-
|
| 44 |
-
ckpt_path = hf_hub_download(
|
| 45 |
-
repo_id="Lightricks/LTX-Video",
|
| 46 |
-
filename=config["checkpoint_path"],
|
| 47 |
-
cache_dir=os.environ.get("HF_HOME")
|
| 48 |
-
)
|
| 49 |
-
return build_complete_pipeline_on_cpu(ckpt_path, config)
|
| 50 |
-
|
| 51 |
-
# ==============================================================================
|
| 52 |
-
# --- CLASSE DE WORKER UNIFICADO ---
|
| 53 |
-
# ==============================================================================
|
| 54 |
-
|
| 55 |
-
class LTXWorker(threading.Thread):
|
| 56 |
-
"""
|
| 57 |
-
Um worker unificado que gerencia uma instância completa do pipeline LTX.
|
| 58 |
-
Ele carrega o modelo e distribui seus componentes (Transformer/VAE) para as GPUs corretas.
|
| 59 |
-
"""
|
| 60 |
-
def __init__(self, worker_id: int):
|
| 61 |
super().__init__()
|
| 62 |
self.worker_id = worker_id
|
| 63 |
-
self.
|
| 64 |
self.is_healthy = False
|
| 65 |
self.is_busy = False
|
| 66 |
-
self.daemon = True
|
| 67 |
-
self.autocast_dtype: torch.dtype = torch.float32
|
| 68 |
|
| 69 |
def run(self):
|
| 70 |
-
"""
|
| 71 |
try:
|
| 72 |
-
self.
|
| 73 |
-
self._set_precision_policy()
|
| 74 |
-
|
| 75 |
-
main_device = gpu_manager.get_ltx_device()
|
| 76 |
-
vae_device = gpu_manager.get_ltx_vae_device()
|
| 77 |
-
|
| 78 |
-
logging.info(f"[LTXWorker-{self.worker_id}] Moving components -> Main: {main_device}, VAE: {vae_device}")
|
| 79 |
-
self.pipeline.to(main_device) # Move tudo para a GPU principal primeiro
|
| 80 |
-
self.pipeline.vae.to(vae_device) # Move especificamente o VAE para sua GPU dedicada
|
| 81 |
-
|
| 82 |
self.is_healthy = True
|
| 83 |
-
logging.info(f"✅
|
| 84 |
except Exception:
|
| 85 |
self.is_healthy = False
|
| 86 |
-
logging.error(f"❌
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
def
|
| 89 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
try:
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
|
|
|
| 100 |
self.is_busy = True
|
|
|
|
| 101 |
try:
|
| 102 |
-
|
| 103 |
-
|
| 104 |
return result
|
| 105 |
-
except Exception:
|
|
|
|
| 106 |
self.is_healthy = False
|
| 107 |
raise
|
| 108 |
finally:
|
| 109 |
self.is_busy = False
|
| 110 |
|
| 111 |
# ==============================================================================
|
| 112 |
-
# --- O GERENCIADOR DE POOL (SINGLETON) ---
|
| 113 |
# ==============================================================================
|
| 114 |
class LTXAducManager:
|
| 115 |
_instance = None
|
| 116 |
_initialized = False
|
| 117 |
|
| 118 |
def __new__(cls, *args, **kwargs):
|
| 119 |
-
if cls._instance is None:
|
|
|
|
| 120 |
return cls._instance
|
| 121 |
|
| 122 |
def __init__(self):
|
| 123 |
if self._initialized: return
|
| 124 |
|
| 125 |
-
logging.info("🏭 Initializing
|
| 126 |
|
| 127 |
-
self.
|
| 128 |
-
self.
|
|
|
|
|
|
|
| 129 |
self.pool_lock = threading.Lock()
|
| 130 |
|
| 131 |
self._initialize_workers()
|
| 132 |
|
| 133 |
-
|
|
|
|
|
|
|
| 134 |
self.health_monitor = threading.Thread(target=self._health_check_loop, daemon=True)
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
self.health_monitor.start()
|
| 137 |
|
| 138 |
self._initialized = True
|
| 139 |
-
logging.info("✅
|
| 140 |
|
| 141 |
def _initialize_workers(self):
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
self.workers.append(worker)
|
| 147 |
-
worker.start()
|
| 148 |
|
| 149 |
-
def _get_available_worker(self) -> Optional[LTXWorker]:
|
| 150 |
with self.pool_lock:
|
| 151 |
-
for
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
return worker
|
| 154 |
return None
|
| 155 |
|
| 156 |
-
def _dispatch_jobs(self):
|
|
|
|
| 157 |
while True:
|
| 158 |
-
job_func, args, kwargs, future =
|
| 159 |
worker = None
|
| 160 |
while worker is None:
|
| 161 |
-
worker = self._get_available_worker()
|
| 162 |
-
if worker is None:
|
|
|
|
|
|
|
| 163 |
try:
|
| 164 |
result = worker.execute(job_func, args, kwargs)
|
| 165 |
future.put(result)
|
|
@@ -167,22 +193,51 @@ class LTXAducManager:
|
|
| 167 |
future.put(e)
|
| 168 |
|
| 169 |
def _health_check_loop(self):
|
|
|
|
| 170 |
while True:
|
| 171 |
time.sleep(30)
|
|
|
|
| 172 |
with self.pool_lock:
|
| 173 |
-
for i, worker in enumerate(self.
|
| 174 |
if not worker.is_alive() or not worker.is_healthy:
|
| 175 |
-
logging.warning(f"LTX Worker {worker.worker_id} is UNHEALTHY. Restarting...")
|
| 176 |
-
new_worker =
|
| 177 |
-
self.
|
| 178 |
new_worker.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
result = future.get()
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
| 185 |
return result
|
| 186 |
|
|
|
|
| 187 |
# --- INSTANCIAÇÃO GLOBAL ---
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# FILE: api/ltx/ltx_aduc_manager.py
|
| 2 |
+
# DESCRIPTION: An advanced, fault-tolerant pool manager for LTX and VAE workers.
|
| 3 |
+
# It handles job queuing, load balancing, and health monitoring for production-grade stability.
|
|
|
|
| 4 |
|
| 5 |
import logging
|
| 6 |
import torch
|
|
|
|
| 9 |
import threading
|
| 10 |
import queue
|
| 11 |
import time
|
| 12 |
+
from typing import List, Optional, Callable, Any, Tuple
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# Imports dos builders e do gpu_manager
|
| 15 |
+
from api.ltx.ltx_utils import get_main_ltx_pipeline, get_main_vae
|
| 16 |
from managers.gpu_manager import gpu_manager
|
|
|
|
| 17 |
|
| 18 |
# --- Adiciona o path do LTX-Video para importação de tipos ---
|
| 19 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
|
|
| 24 |
add_deps_to_path()
|
| 25 |
|
| 26 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 27 |
+
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 28 |
|
| 29 |
# ==============================================================================
|
| 30 |
+
# --- CLASSES DE WORKER (Especialistas em Tarefas) ---
|
| 31 |
# ==============================================================================
|
| 32 |
|
| 33 |
+
class BaseWorker(threading.Thread):
|
| 34 |
+
"""Classe base para nossos workers com gerenciamento de estado e saúde."""
|
| 35 |
+
def __init__(self, worker_id: int, device: torch.device):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
super().__init__()
|
| 37 |
self.worker_id = worker_id
|
| 38 |
+
self.device = device
|
| 39 |
self.is_healthy = False
|
| 40 |
self.is_busy = False
|
| 41 |
+
self.daemon = True # Permite que o programa principal saia
|
|
|
|
| 42 |
|
| 43 |
def run(self):
|
| 44 |
+
"""O loop de vida do worker, responsável por carregar os modelos."""
|
| 45 |
try:
|
| 46 |
+
self._load_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
self.is_healthy = True
|
| 48 |
+
logging.info(f"✅ Worker {self.worker_id} ({self.__class__.__name__}) on {self.device} is healthy and ready.")
|
| 49 |
except Exception:
|
| 50 |
self.is_healthy = False
|
| 51 |
+
logging.error(f"❌ Worker {self.worker_id} on {self.device} FAILED to initialize!", exc_info=True)
|
| 52 |
+
|
| 53 |
+
def _load_models(self):
|
| 54 |
+
"""Método a ser implementado pelas classes filhas."""
|
| 55 |
+
raise NotImplementedError
|
| 56 |
|
| 57 |
+
def get_status(self) -> Tuple[bool, bool]:
|
| 58 |
+
"""Retorna (is_healthy, is_busy)."""
|
| 59 |
+
return self.is_healthy, self.is_busy
|
| 60 |
+
|
| 61 |
+
class LTXMainWorker(BaseWorker):
|
| 62 |
+
"""Worker especialista para o pipeline principal do LTX."""
|
| 63 |
+
def __init__(self, worker_id: int, device: torch.device):
|
| 64 |
+
super().__init__(worker_id, device)
|
| 65 |
+
self.pipeline: Optional[LTXVideoPipeline] = None
|
| 66 |
+
|
| 67 |
+
def _load_models(self):
|
| 68 |
+
logging.info(f"[LTXWorker-{self.worker_id}] Loading models to CPU...")
|
| 69 |
+
self.pipeline = get_main_ltx_pipeline()
|
| 70 |
+
logging.info(f"[LTXWorker-{self.worker_id}] Moving pipeline to {self.device}...")
|
| 71 |
+
self.pipeline.to(self.device)
|
| 72 |
+
|
| 73 |
+
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
| 74 |
+
"""Executa um trabalho, gerenciando o estado 'busy'."""
|
| 75 |
+
self.is_busy = True
|
| 76 |
+
logging.info(f"Worker {self.worker_id} (LTX) starting job: {job_func.__name__}")
|
| 77 |
try:
|
| 78 |
+
result = job_func(self.pipeline, *args, **kwargs)
|
| 79 |
+
logging.info(f"Worker {self.worker_id} (LTX) finished job successfully.")
|
| 80 |
+
return result
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logging.error(f"Worker {self.worker_id} (LTX) job failed!", exc_info=True)
|
| 83 |
+
self.is_healthy = False # Falha em um job marca o worker como não saudável
|
| 84 |
+
raise
|
| 85 |
+
finally:
|
| 86 |
+
self.is_busy = False
|
| 87 |
+
|
| 88 |
+
class VAEWorker(BaseWorker):
|
| 89 |
+
"""Worker especialista para o modelo VAE."""
|
| 90 |
+
def __init__(self, worker_id: int, device: torch.device):
|
| 91 |
+
super().__init__(worker_id, device)
|
| 92 |
+
self.vae: Optional[CausalVideoAutoencoder] = None
|
| 93 |
+
|
| 94 |
+
def _load_models(self):
|
| 95 |
+
logging.info(f"[VAEWorker-{self.worker_id}] Loading VAE model to CPU...")
|
| 96 |
+
self.vae = get_main_vae()
|
| 97 |
+
logging.info(f"[VAEWorker-{self.worker_id}] Moving VAE to {self.device}...")
|
| 98 |
+
self.vae.to(self.device)
|
| 99 |
+
self.vae.eval()
|
| 100 |
|
| 101 |
def execute(self, job_func: Callable, args: tuple, kwargs: dict) -> Any:
|
| 102 |
+
"""Executa um trabalho, gerenciando o estado 'busy'."""
|
| 103 |
self.is_busy = True
|
| 104 |
+
logging.info(f"Worker {self.worker_id} (VAE) starting job: {job_func.__name__}")
|
| 105 |
try:
|
| 106 |
+
result = job_func(self.vae, *args, **kwargs)
|
| 107 |
+
logging.info(f"Worker {self.worker_id} (VAE) finished job successfully.")
|
| 108 |
return result
|
| 109 |
+
except Exception as e:
|
| 110 |
+
logging.error(f"Worker {self.worker_id} (VAE) job failed!", exc_info=True)
|
| 111 |
self.is_healthy = False
|
| 112 |
raise
|
| 113 |
finally:
|
| 114 |
self.is_busy = False
|
| 115 |
|
| 116 |
# ==============================================================================
|
| 117 |
+
# --- O GERENCIADOR DE POOL AVANÇADO (SINGLETON) ---
|
| 118 |
# ==============================================================================
|
| 119 |
class LTXAducManager:
|
| 120 |
_instance = None
|
| 121 |
_initialized = False
|
| 122 |
|
| 123 |
def __new__(cls, *args, **kwargs):
|
| 124 |
+
if cls._instance is None:
|
| 125 |
+
cls._instance = super().__new__(cls)
|
| 126 |
return cls._instance
|
| 127 |
|
| 128 |
def __init__(self):
|
| 129 |
if self._initialized: return
|
| 130 |
|
| 131 |
+
logging.info("🏭 Initializing Advanced Pool Manager for LTX...")
|
| 132 |
|
| 133 |
+
self.ltx_workers: List[LTXMainWorker] = []
|
| 134 |
+
self.vae_workers: List[VAEWorker] = []
|
| 135 |
+
self.ltx_job_queue = queue.Queue()
|
| 136 |
+
self.vae_job_queue = queue.Queue()
|
| 137 |
self.pool_lock = threading.Lock()
|
| 138 |
|
| 139 |
self._initialize_workers()
|
| 140 |
|
| 141 |
+
# Inicia threads consumidores para processar as filas
|
| 142 |
+
self.ltx_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.ltx_job_queue, self.ltx_workers), daemon=True)
|
| 143 |
+
self.vae_dispatcher = threading.Thread(target=self._dispatch_jobs, args=(self.vae_job_queue, self.vae_workers), daemon=True)
|
| 144 |
self.health_monitor = threading.Thread(target=self._health_check_loop, daemon=True)
|
| 145 |
+
|
| 146 |
+
self.ltx_dispatcher.start()
|
| 147 |
+
self.vae_dispatcher.start()
|
| 148 |
self.health_monitor.start()
|
| 149 |
|
| 150 |
self._initialized = True
|
| 151 |
+
logging.info("✅ Advanced Pool Manager is running with all threads started.")
|
| 152 |
|
| 153 |
def _initialize_workers(self):
|
| 154 |
+
"""Cria e inicia os workers com base nas GPUs alocadas."""
|
| 155 |
+
# Supondo que gpu_manager agora tenha get_ltx_devices() e get_seedvr_devices() que retornam listas
|
| 156 |
+
ltx_gpus = gpu_manager.get_ltx_device() # Ajuste se o nome for diferente
|
| 157 |
+
vae_gpus = gpu_manager.get_ltx_vae_device() # Ajuste se o nome for diferente
|
|
|
|
|
|
|
| 158 |
|
|
|
|
| 159 |
with self.pool_lock:
|
| 160 |
+
for i, device_id in enumerate([ltx_gpus]): # Assumindo que retorna uma lista
|
| 161 |
+
worker = LTXMainWorker(worker_id=i, device=torch.device(f"cuda:{device_id}"))
|
| 162 |
+
self.ltx_workers.append(worker)
|
| 163 |
+
worker.start()
|
| 164 |
+
|
| 165 |
+
for i, device_id in enumerate([vae_gpus]): # Assumindo que retorna uma lista
|
| 166 |
+
worker = VAEWorker(worker_id=i, device=torch.device(f"cuda:{device_id}"))
|
| 167 |
+
self.vae_workers.append(worker)
|
| 168 |
+
worker.start()
|
| 169 |
+
|
| 170 |
+
def _get_available_worker(self, worker_pool: List[BaseWorker]) -> Optional[BaseWorker]:
|
| 171 |
+
"""Encontra um worker saudável e desocupado no pool."""
|
| 172 |
+
with self.pool_lock:
|
| 173 |
+
for worker in worker_pool:
|
| 174 |
+
healthy, busy = worker.get_status()
|
| 175 |
+
if healthy and not busy:
|
| 176 |
return worker
|
| 177 |
return None
|
| 178 |
|
| 179 |
+
def _dispatch_jobs(self, job_queue: queue.Queue, worker_pool: List[BaseWorker]):
|
| 180 |
+
"""Loop do thread consumidor que pega trabalhos da fila e os despacha."""
|
| 181 |
while True:
|
| 182 |
+
job_func, args, kwargs, future = job_queue.get()
|
| 183 |
worker = None
|
| 184 |
while worker is None:
|
| 185 |
+
worker = self._get_available_worker(worker_pool)
|
| 186 |
+
if worker is None:
|
| 187 |
+
time.sleep(0.1) # Espera por um worker ficar livre
|
| 188 |
+
|
| 189 |
try:
|
| 190 |
result = worker.execute(job_func, args, kwargs)
|
| 191 |
future.put(result)
|
|
|
|
| 193 |
future.put(e)
|
| 194 |
|
| 195 |
def _health_check_loop(self):
|
| 196 |
+
"""Thread que periodicamente verifica e reinicia workers não saudáveis."""
|
| 197 |
while True:
|
| 198 |
time.sleep(30)
|
| 199 |
+
logging.debug("Running health check on all workers...")
|
| 200 |
with self.pool_lock:
|
| 201 |
+
for i, worker in enumerate(self.ltx_workers):
|
| 202 |
if not worker.is_alive() or not worker.is_healthy:
|
| 203 |
+
logging.warning(f"LTX Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 204 |
+
new_worker = LTXMainWorker(worker.worker_id, worker.device)
|
| 205 |
+
self.ltx_workers[i] = new_worker
|
| 206 |
new_worker.start()
|
| 207 |
+
# Repetir o laço para VAE workers
|
| 208 |
+
for i, worker in enumerate(self.vae_workers):
|
| 209 |
+
if not worker.is_alive() or not worker.is_healthy:
|
| 210 |
+
logging.warning(f"VAE Worker {worker.worker_id} on {worker.device} is UNHEALTHY. Restarting...")
|
| 211 |
+
new_worker = VAEWorker(worker.worker_id, worker.device)
|
| 212 |
+
self.vae_workers[i] = new_worker
|
| 213 |
+
new_worker.start()
|
| 214 |
+
|
| 215 |
+
def submit_job(self, job_type: str, job_func: Callable, *args, **kwargs) -> Any:
|
| 216 |
+
"""
|
| 217 |
+
Ponto de entrada público para submeter um trabalho ao pool.
|
| 218 |
+
Esta função é síncrona: ela espera pelo resultado.
|
| 219 |
+
"""
|
| 220 |
+
if job_type not in ['ltx', 'vae']:
|
| 221 |
+
raise ValueError("Invalid job_type. Must be 'ltx' or 'vae'.")
|
| 222 |
+
|
| 223 |
+
job_queue = self.ltx_job_queue if job_type == 'ltx' else self.vae_job_queue
|
| 224 |
+
future = queue.Queue() # Usamos uma fila como um 'future' para obter o resultado de volta
|
| 225 |
|
| 226 |
+
job_queue.put((job_func, args, kwargs, future))
|
| 227 |
+
|
| 228 |
+
# Bloqueia e espera pelo resultado ser colocado no 'future' pelo dispatcher
|
| 229 |
result = future.get()
|
| 230 |
+
|
| 231 |
+
if isinstance(result, Exception):
|
| 232 |
+
raise result # Se o job falhou, re-lança a exceção no thread principal
|
| 233 |
+
|
| 234 |
return result
|
| 235 |
|
| 236 |
+
# ==============================================================================
|
| 237 |
# --- INSTANCIAÇÃO GLOBAL ---
|
| 238 |
+
# ==============================================================================
|
| 239 |
+
try:
|
| 240 |
+
ltx_aduc_manager = LTXAducManager()
|
| 241 |
+
except Exception as e:
|
| 242 |
+
logging.critical("CRITICAL ERROR: Failed to initialize the LTXAducManager pool.", exc_info=True)
|
| 243 |
+
ltx_aduc_manager = None
|
api/ltx/ltx_aduc_orchestrator.py
CHANGED
|
@@ -1,26 +1,21 @@
|
|
| 1 |
# FILE: api/ltx_aduc_orchestrator.py
|
| 2 |
# DESCRIPTION: The main workflow orchestrator for the ADUC-SDR LTX suite.
|
| 3 |
-
#
|
| 4 |
-
# to execute
|
| 5 |
|
| 6 |
import logging
|
| 7 |
import time
|
| 8 |
-
import yaml
|
| 9 |
-
import os
|
| 10 |
-
import sys
|
| 11 |
from PIL import Image
|
| 12 |
-
from typing import Optional, Dict
|
| 13 |
|
| 14 |
-
# O Orquestrador importa
|
|
|
|
| 15 |
from api.ltx.ltx_aduc_pipeline import ltx_aduc_pipeline
|
|
|
|
| 16 |
|
| 17 |
# O Orquestrador importa as FERRAMENTAS de que precisa para as tarefas finais.
|
| 18 |
from tools.video_encode_tool import video_encode_tool_singleton
|
| 19 |
|
| 20 |
-
# Importa o Path para carregar a configuração.
|
| 21 |
-
from pathlib import Path
|
| 22 |
-
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 23 |
-
|
| 24 |
# ==============================================================================
|
| 25 |
# --- A CLASSE ORQUESTRADORA (Cérebro do Workflow) ---
|
| 26 |
# ==============================================================================
|
|
@@ -28,26 +23,16 @@ LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
| 28 |
class LtxAducOrchestrator:
|
| 29 |
"""
|
| 30 |
Orquestra o fluxo de trabalho completo de geração de vídeo,
|
| 31 |
-
coordenando
|
| 32 |
"""
|
| 33 |
def __init__(self):
|
| 34 |
"""
|
| 35 |
-
Inicializa o orquestrador
|
|
|
|
| 36 |
"""
|
| 37 |
-
self.output_dir = "/app/output"
|
| 38 |
-
self.base_config = self._load_base_config()
|
| 39 |
logging.info("✅ LTX ADUC Orchestrator initialized and ready.")
|
| 40 |
|
| 41 |
-
def _load_base_config(self) -> Dict:
|
| 42 |
-
"""Carrega a configuração base do arquivo YAML, que contém os parâmetros padrão."""
|
| 43 |
-
try:
|
| 44 |
-
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 45 |
-
with open(config_path, "r") as file:
|
| 46 |
-
return yaml.safe_load(file)
|
| 47 |
-
except Exception as e:
|
| 48 |
-
logging.error(f"Failed to load base config file. Orchestrator may not function correctly. Error: {e}")
|
| 49 |
-
return {}
|
| 50 |
-
|
| 51 |
def __call__(
|
| 52 |
self,
|
| 53 |
prompt: str,
|
|
@@ -59,80 +44,87 @@ class LtxAducOrchestrator:
|
|
| 59 |
output_filename_base: str = "ltx_aduc_video"
|
| 60 |
) -> Optional[str]:
|
| 61 |
"""
|
| 62 |
-
Ponto de entrada principal do Orquestrador. Executa o pipeline completo
|
| 63 |
|
| 64 |
Args:
|
| 65 |
-
prompt (str): O prompt de texto completo
|
| 66 |
-
initial_image (Optional[Image.Image]):
|
| 67 |
height (int): Altura do vídeo final.
|
| 68 |
width (int): Largura do vídeo final.
|
| 69 |
duration_in_seconds (float): Duração total desejada do vídeo.
|
| 70 |
-
ltx_configs (Optional[Dict]): Configurações avançadas
|
| 71 |
-
output_filename_base (str):
|
| 72 |
|
| 73 |
Returns:
|
| 74 |
-
Optional[str]: O caminho
|
| 75 |
"""
|
| 76 |
t0 = time.time()
|
| 77 |
logging.info(f"Orchestrator starting new job for prompt: '{prompt.splitlines()[0]}...'")
|
| 78 |
|
| 79 |
try:
|
| 80 |
# =================================================================
|
| 81 |
-
# --- ETAPA 1: PREPARAÇÃO
|
| 82 |
# =================================================================
|
|
|
|
| 83 |
prompt_list = [line.strip() for line in prompt.splitlines() if line.strip()]
|
| 84 |
if not prompt_list:
|
| 85 |
raise ValueError("O prompt está vazio ou não contém linhas válidas.")
|
| 86 |
|
|
|
|
| 87 |
initial_conditioning_items = []
|
| 88 |
if initial_image:
|
| 89 |
-
logging.info("
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
)
|
| 96 |
-
|
| 97 |
-
common_ltx_args = self.base_config.get("first_pass", {}).copy()
|
| 98 |
-
common_ltx_args.update({
|
| 99 |
-
'negative_prompt': "blurry, low quality, bad anatomy, deformed",
|
| 100 |
-
'height': height,
|
| 101 |
-
'width': width
|
| 102 |
-
})
|
| 103 |
-
if ltx_configs:
|
| 104 |
-
common_ltx_args.update(ltx_configs)
|
| 105 |
|
| 106 |
# =================================================================
|
| 107 |
-
# --- ETAPA 2:
|
| 108 |
# =================================================================
|
| 109 |
-
logging.info("
|
| 110 |
-
|
|
|
|
| 111 |
prompt_list=prompt_list,
|
|
|
|
|
|
|
|
|
|
| 112 |
duration_in_seconds=duration_in_seconds,
|
| 113 |
-
|
| 114 |
-
initial_conditioning_items=initial_conditioning_items
|
| 115 |
)
|
|
|
|
| 116 |
if final_latents is None:
|
| 117 |
raise RuntimeError("LTX client failed to generate a latent tensor.")
|
| 118 |
-
logging.info(f"
|
| 119 |
|
| 120 |
# =================================================================
|
| 121 |
-
# --- ETAPA 3:
|
| 122 |
# =================================================================
|
| 123 |
-
logging.info("
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
if pixel_tensor is None:
|
| 126 |
-
raise RuntimeError("
|
| 127 |
-
logging.info(f"
|
| 128 |
|
| 129 |
# =================================================================
|
| 130 |
-
# --- ETAPA 4:
|
| 131 |
# =================================================================
|
| 132 |
video_filename = f"{output_filename_base}_{int(time.time())}_{used_seed}.mp4"
|
| 133 |
output_path = f"{self.output_dir}/{video_filename}"
|
| 134 |
|
| 135 |
-
logging.info(f"
|
|
|
|
| 136 |
video_encode_tool_singleton.save_video_from_tensor(
|
| 137 |
pixel_5d=pixel_tensor,
|
| 138 |
path=output_path,
|
|
@@ -150,5 +142,10 @@ class LtxAducOrchestrator:
|
|
| 150 |
|
| 151 |
# ==============================================================================
|
| 152 |
# --- INSTÂNCIA SINGLETON DO ORQUESTRADOR ---
|
|
|
|
| 153 |
# ==============================================================================
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# FILE: api/ltx_aduc_orchestrator.py
|
| 2 |
# DESCRIPTION: The main workflow orchestrator for the ADUC-SDR LTX suite.
|
| 3 |
+
# It acts as the primary entry point for the UI, coordinating the specialized
|
| 4 |
+
# LTX and VAE clients to execute a complete video generation pipeline from prompt to MP4.
|
| 5 |
|
| 6 |
import logging
|
| 7 |
import time
|
|
|
|
|
|
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
+
from typing import Optional, Dict
|
| 10 |
|
| 11 |
+
# O Orquestrador importa os CLIENTES especialistas que ele vai coordenar.
|
| 12 |
+
# Estes clientes são responsáveis por submeter os trabalhos ao pool de workers.
|
| 13 |
from api.ltx.ltx_aduc_pipeline import ltx_aduc_pipeline
|
| 14 |
+
from api.ltx.vae_aduc_pipeline import vae_aduc_pipeline
|
| 15 |
|
| 16 |
# O Orquestrador importa as FERRAMENTAS de que precisa para as tarefas finais.
|
| 17 |
from tools.video_encode_tool import video_encode_tool_singleton
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# ==============================================================================
|
| 20 |
# --- A CLASSE ORQUESTRADORA (Cérebro do Workflow) ---
|
| 21 |
# ==============================================================================
|
|
|
|
| 23 |
class LtxAducOrchestrator:
|
| 24 |
"""
|
| 25 |
Orquestra o fluxo de trabalho completo de geração de vídeo,
|
| 26 |
+
coordenando os clientes LTX e VAE. É o ponto de entrada principal para a UI.
|
| 27 |
"""
|
| 28 |
def __init__(self):
|
| 29 |
"""
|
| 30 |
+
Inicializa o orquestrador. A inicialização é leve, pois os modelos
|
| 31 |
+
pesados são gerenciados pelo LTXAducManager em segundo plano.
|
| 32 |
"""
|
| 33 |
+
self.output_dir = "/app/output" # Diretório padrão para salvar os vídeos
|
|
|
|
| 34 |
logging.info("✅ LTX ADUC Orchestrator initialized and ready.")
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
def __call__(
|
| 37 |
self,
|
| 38 |
prompt: str,
|
|
|
|
| 44 |
output_filename_base: str = "ltx_aduc_video"
|
| 45 |
) -> Optional[str]:
|
| 46 |
"""
|
| 47 |
+
Ponto de entrada principal do Orquestrador. Executa o pipeline completo.
|
| 48 |
|
| 49 |
Args:
|
| 50 |
+
prompt (str): O prompt de texto completo. Cada nova linha é tratada como uma cena.
|
| 51 |
+
initial_image (Optional[Image.Image]): Uma imagem PIL para condicionar a primeira cena.
|
| 52 |
height (int): Altura do vídeo final.
|
| 53 |
width (int): Largura do vídeo final.
|
| 54 |
duration_in_seconds (float): Duração total desejada do vídeo.
|
| 55 |
+
ltx_configs (Optional[Dict]): Configurações avançadas para a geração LTX (steps, guidance, etc.).
|
| 56 |
+
output_filename_base (str): O nome base para o arquivo de vídeo final.
|
| 57 |
|
| 58 |
Returns:
|
| 59 |
+
Optional[str]: O caminho do arquivo de vídeo .mp4 gerado, ou None em caso de falha.
|
| 60 |
"""
|
| 61 |
t0 = time.time()
|
| 62 |
logging.info(f"Orchestrator starting new job for prompt: '{prompt.splitlines()[0]}...'")
|
| 63 |
|
| 64 |
try:
|
| 65 |
# =================================================================
|
| 66 |
+
# --- ETAPA 1: PREPARAÇÃO DO INPUT ---
|
| 67 |
# =================================================================
|
| 68 |
+
# Converte a string do prompt em uma lista de cenas.
|
| 69 |
prompt_list = [line.strip() for line in prompt.splitlines() if line.strip()]
|
| 70 |
if not prompt_list:
|
| 71 |
raise ValueError("O prompt está vazio ou não contém linhas válidas.")
|
| 72 |
|
| 73 |
+
# Prepara o item de condicionamento inicial, se uma imagem for fornecida.
|
| 74 |
initial_conditioning_items = []
|
| 75 |
if initial_image:
|
| 76 |
+
logging.info("Preparing initial conditioning item via VAE client...")
|
| 77 |
+
# Define os parâmetros: aplicar no frame 0 com força total (1.0).
|
| 78 |
+
conditioning_params = [(0, 1.0)]
|
| 79 |
+
# Chama o cliente VAE para fazer o trabalho pesado de conversão de imagem para LatentConditioningItem.
|
| 80 |
+
initial_conditioning_items = vae_aduc_pipeline(
|
| 81 |
+
media=[initial_image],
|
| 82 |
+
task='create_conditioning_items',
|
| 83 |
+
target_resolution=(height, width),
|
| 84 |
+
conditioning_params=conditioning_params
|
| 85 |
)
|
| 86 |
+
logging.info(f"Successfully created {len(initial_conditioning_items)} conditioning item(s).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# =================================================================
|
| 89 |
+
# --- ETAPA 2: GERAÇÃO DO VÍDEO LATENTE ---
|
| 90 |
# =================================================================
|
| 91 |
+
logging.info("Submitting job to LTX client for latent video generation...")
|
| 92 |
+
# Chama o cliente LTX para gerar o tensor latente completo.
|
| 93 |
+
final_latents, used_seed = ltx_aduc_pipeline(
|
| 94 |
prompt_list=prompt_list,
|
| 95 |
+
initial_conditioning_items=initial_conditioning_items,
|
| 96 |
+
height=height,
|
| 97 |
+
width=width,
|
| 98 |
duration_in_seconds=duration_in_seconds,
|
| 99 |
+
ltx_configs=ltx_configs
|
|
|
|
| 100 |
)
|
| 101 |
+
|
| 102 |
if final_latents is None:
|
| 103 |
raise RuntimeError("LTX client failed to generate a latent tensor.")
|
| 104 |
+
logging.info(f"LTX client returned latent tensor with shape: {final_latents.shape}")
|
| 105 |
|
| 106 |
# =================================================================
|
| 107 |
+
# --- ETAPA 3: DECODIFICAÇÃO DO LATENTE PARA PIXELS ---
|
| 108 |
# =================================================================
|
| 109 |
+
logging.info("Submitting job to VAE client for latent-to-pixel decoding...")
|
| 110 |
+
# Chama o cliente VAE para converter o resultado em um vídeo visível (tensor de pixels).
|
| 111 |
+
pixel_tensor = vae_aduc_pipeline(
|
| 112 |
+
media=final_latents,
|
| 113 |
+
task='decode'
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
if pixel_tensor is None:
|
| 117 |
+
raise RuntimeError("VAE client failed to decode the latent tensor.")
|
| 118 |
+
logging.info(f"VAE client returned pixel tensor with shape: {pixel_tensor.shape}")
|
| 119 |
|
| 120 |
# =================================================================
|
| 121 |
+
# --- ETAPA 4: CODIFICAÇÃO PARA ARQUIVO DE VÍDEO MP4 ---
|
| 122 |
# =================================================================
|
| 123 |
video_filename = f"{output_filename_base}_{int(time.time())}_{used_seed}.mp4"
|
| 124 |
output_path = f"{self.output_dir}/{video_filename}"
|
| 125 |
|
| 126 |
+
logging.info(f"Submitting job to VideoEncodeTool to save final MP4 to: {output_path}")
|
| 127 |
+
# Usa a ferramenta de vídeo para salvar o tensor de pixels no arquivo final.
|
| 128 |
video_encode_tool_singleton.save_video_from_tensor(
|
| 129 |
pixel_5d=pixel_tensor,
|
| 130 |
path=output_path,
|
|
|
|
| 142 |
|
| 143 |
# ==============================================================================
|
| 144 |
# --- INSTÂNCIA SINGLETON DO ORQUESTRADOR ---
|
| 145 |
+
# Este é o ponto de entrada principal que a UI (app.py) irá chamar.
|
| 146 |
# ==============================================================================
|
| 147 |
+
try:
|
| 148 |
+
ltx_aduc_orchestrator = LtxAducOrchestrator()
|
| 149 |
+
except Exception as e:
|
| 150 |
+
logging.critical("CRITICAL: Failed to initialize the LtxAducOrchestrator.", exc_info=True)
|
| 151 |
+
ltx_aduc_orchestrator = None
|
api/ltx/ltx_aduc_pipeline.py
CHANGED
|
@@ -1,130 +1,142 @@
|
|
| 1 |
# FILE: api/ltx/ltx_aduc_pipeline.py
|
| 2 |
-
# DESCRIPTION: A
|
| 3 |
-
# to the
|
|
|
|
| 4 |
|
| 5 |
import logging
|
| 6 |
import time
|
| 7 |
import torch
|
| 8 |
import random
|
| 9 |
-
|
| 10 |
-
from
|
| 11 |
-
from dataclasses import dataclass
|
| 12 |
-
from pathlib import Path
|
| 13 |
-
import sys
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# O cliente importa o MANAGER para submeter todos os trabalhos.
|
| 18 |
from api.ltx.ltx_aduc_manager import ltx_aduc_manager
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
def add_deps_to_path():
|
| 23 |
-
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 24 |
-
if repo_path not in sys.path:
|
| 25 |
-
sys.path.insert(0, repo_path)
|
| 26 |
-
add_deps_to_path()
|
| 27 |
-
|
| 28 |
-
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 29 |
-
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
| 30 |
-
|
| 31 |
|
| 32 |
-
# ==============================================================================
|
| 33 |
-
# --- DEFINIÇÕES DE ESTRUTURA ---
|
| 34 |
-
# ==============================================================================
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
# ==============================================================================
|
| 44 |
# --- FUNÇÕES DE TRABALHO (Jobs a serem executados no Pool LTX) ---
|
| 45 |
# ==============================================================================
|
| 46 |
|
| 47 |
-
def
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
generator = torch.Generator(device=pipeline.device).manual_seed(kwargs['seed'])
|
| 64 |
-
pipeline_kwargs = {"generator": generator, "output_type": "latent", **kwargs}
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
return latents_raw.cpu()
|
| 70 |
|
|
|
|
| 71 |
# ==============================================================================
|
| 72 |
-
# --- A CLASSE CLIENTE
|
| 73 |
# ==============================================================================
|
| 74 |
|
| 75 |
class LtxAducPipeline:
|
| 76 |
"""
|
| 77 |
-
Cliente
|
|
|
|
| 78 |
"""
|
| 79 |
def __init__(self):
|
| 80 |
-
logging.info("✅
|
|
|
|
| 81 |
self.FRAMES_ALIGNMENT = 8
|
|
|
|
| 82 |
|
| 83 |
def _get_random_seed(self) -> int:
|
|
|
|
| 84 |
return random.randint(0, 2**32 - 1)
|
| 85 |
|
| 86 |
def _align(self, dim: int, alignment: int = 8) -> int:
|
|
|
|
| 87 |
return ((dim + alignment - 1) // alignment) * alignment
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def encode_to_conditioning_items(self, media_list: List, params: List, resolution: Tuple[int, int]) -> List[LatentConditioningItem]:
|
| 92 |
-
"""Converte uma lista de imagens em uma lista de LatentConditioningItem."""
|
| 93 |
-
pixel_tensors = [load_image_to_tensor_with_resize_and_crop(m, resolution[0], resolution[1]) for m in media_list]
|
| 94 |
-
items = []
|
| 95 |
-
for i, pt in enumerate(pixel_tensors):
|
| 96 |
-
latent_tensor = ltx_aduc_manager.submit_job(_job_encode_media, pixel_tensor=pt)
|
| 97 |
-
frame_number, strength = params[i]
|
| 98 |
-
items.append(LatentConditioningItem(
|
| 99 |
-
latent_tensor=latent_tensor,
|
| 100 |
-
media_frame_number=frame_number,
|
| 101 |
-
conditioning_strength=strength
|
| 102 |
-
))
|
| 103 |
-
return items
|
| 104 |
-
|
| 105 |
-
def decode_to_pixels(self, latent_tensor: torch.Tensor) -> torch.Tensor:
|
| 106 |
-
"""Decodifica um tensor latente em um tensor de pixels."""
|
| 107 |
-
return ltx_aduc_manager.submit_job(_job_decode_latent, latent_tensor=latent_tensor)
|
| 108 |
-
|
| 109 |
-
def generate_latents(
|
| 110 |
self,
|
| 111 |
prompt_list: List[str],
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
| 115 |
) -> Tuple[Optional[torch.Tensor], Optional[int]]:
|
| 116 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
t0 = time.time()
|
| 118 |
-
logging.info(f"LTX Client received a generation job
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
used_seed = self._get_random_seed()
|
|
|
|
| 120 |
|
|
|
|
| 121 |
num_chunks = len(prompt_list)
|
| 122 |
total_frames = self._align(int(duration_in_seconds * 24))
|
| 123 |
-
frames_per_chunk_base = total_frames // num_chunks
|
| 124 |
overlap_frames = self._align(9) if num_chunks > 1 else 0
|
| 125 |
|
| 126 |
final_latents_list = []
|
| 127 |
-
overlap_condition_item = None
|
| 128 |
|
| 129 |
for i, chunk_prompt in enumerate(prompt_list):
|
| 130 |
current_conditions = []
|
|
@@ -133,43 +145,58 @@ class LtxAducPipeline:
|
|
| 133 |
if overlap_condition_item:
|
| 134 |
current_conditions.append(overlap_condition_item)
|
| 135 |
|
|
|
|
| 136 |
num_frames_for_chunk = frames_per_chunk_base
|
| 137 |
-
if i == num_chunks - 1:
|
| 138 |
processed_frames = sum(f.shape[2] for f in final_latents_list)
|
| 139 |
num_frames_for_chunk = total_frames - processed_frames
|
| 140 |
-
num_frames_for_chunk = self._align(num_frames_for_chunk)
|
| 141 |
-
if num_frames_for_chunk <= 0: continue
|
| 142 |
-
|
| 143 |
-
job_specific_args = {
|
| 144 |
-
"prompt": chunk_prompt,
|
| 145 |
-
"num_frames": num_frames_for_chunk,
|
| 146 |
-
"seed": used_seed + i,
|
| 147 |
-
"conditioning_items": current_conditions
|
| 148 |
-
}
|
| 149 |
-
final_job_args = {**common_ltx_args, **job_specific_args}
|
| 150 |
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
if chunk_latents is None:
|
| 154 |
-
logging.error(f"Failed to generate latents for scene {i+1}. Aborting.")
|
| 155 |
return None, used_seed
|
| 156 |
|
|
|
|
| 157 |
if i < num_chunks - 1:
|
|
|
|
| 158 |
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
|
| 159 |
overlap_condition_item = LatentConditioningItem(
|
| 160 |
-
latent_tensor=overlap_latents,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
final_latents_list.append(chunk_latents[:, :, :-overlap_frames, :, :])
|
| 162 |
else:
|
|
|
|
| 163 |
final_latents_list.append(chunk_latents)
|
| 164 |
|
| 165 |
-
|
| 166 |
-
logging.warning("No latent chunks were generated.")
|
| 167 |
-
return None, used_seed
|
| 168 |
-
|
| 169 |
final_latents = torch.cat(final_latents_list, dim=2)
|
|
|
|
| 170 |
logging.info(f"LTX Client job finished in {time.time() - t0:.2f}s. Final latent shape: {final_latents.shape}")
|
| 171 |
|
| 172 |
return final_latents, used_seed
|
| 173 |
|
| 174 |
# --- INSTÂNCIA SINGLETON DO CLIENTE ---
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# FILE: api/ltx/ltx_aduc_pipeline.py
|
| 2 |
+
# DESCRIPTION: A high-level client for submitting LTX video generation jobs to the pool manager.
|
| 3 |
+
# Its sole responsibility is to orchestrate the generation of a final LATENT tensor from prompts
|
| 4 |
+
# and initial conditions, without handling pixel decoding.
|
| 5 |
|
| 6 |
import logging
|
| 7 |
import time
|
| 8 |
import torch
|
| 9 |
import random
|
| 10 |
+
import json
|
| 11 |
+
from typing import List, Optional, Tuple, Union, Dict
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# O cliente importa o MANAGER para submeter trabalhos
|
|
|
|
|
|
|
| 14 |
from api.ltx.ltx_aduc_manager import ltx_aduc_manager
|
| 15 |
|
| 16 |
+
# O cliente precisa da definição de LatentConditioningItem para os seus inputs
|
| 17 |
+
from api.ltx.vae_aduc_pipeline import LatentConditioningItem
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
DEPS_DIR = Path("/data")
|
| 21 |
+
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 22 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 23 |
+
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 24 |
+
sys.path.insert(0, repo_path)
|
| 25 |
+
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
|
| 26 |
+
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 27 |
|
| 28 |
# ==============================================================================
|
| 29 |
# --- FUNÇÕES DE TRABALHO (Jobs a serem executados no Pool LTX) ---
|
| 30 |
# ==============================================================================
|
| 31 |
|
| 32 |
+
def _job_generate_latent_chunk(
|
| 33 |
+
pipeline: LTXVideoPipeline,
|
| 34 |
+
prompt: str,
|
| 35 |
+
negative_prompt: str,
|
| 36 |
+
height: int,
|
| 37 |
+
width: int,
|
| 38 |
+
num_frames: int,
|
| 39 |
+
seed: int,
|
| 40 |
+
conditioning_items: Optional[List[LatentConditioningItem]],
|
| 41 |
+
ltx_configs: Dict
|
| 42 |
+
) -> torch.Tensor:
|
| 43 |
+
"""
|
| 44 |
+
Função de trabalho que executa a geração de um único chunk (cena) de vídeo latente.
|
| 45 |
+
Esta função é executada DENTRO de um LTXMainWorker.
|
| 46 |
+
"""
|
| 47 |
+
generator = torch.Generator(device=pipeline.device).manual_seed(seed)
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# Monta os argumentos para a chamada do pipeline
|
| 50 |
+
pipeline_kwargs = {
|
| 51 |
+
"prompt": prompt,
|
| 52 |
+
"negative_prompt": negative_prompt,
|
| 53 |
+
"height": height,
|
| 54 |
+
"width": width,
|
| 55 |
+
"num_frames": num_frames,
|
| 56 |
+
"frame_rate": 24, # Padrão, pode ser parametrizado se necessário
|
| 57 |
+
"generator": generator,
|
| 58 |
+
"output_type": "latent", # Ponto chave: sempre pedimos latentes
|
| 59 |
+
"conditioning_items": conditioning_items if conditioning_items else None,
|
| 60 |
+
**ltx_configs # Aplica configurações avançadas (guidance, steps, etc.)
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
logging.info(f"[LTX Job] Gerando chunk com {num_frames} frames para o prompt: '{prompt[:50]}...'")
|
| 64 |
+
|
| 65 |
+
# O pipeline já está na GPU correta dentro do worker
|
| 66 |
+
with torch.autocast(device_type=pipeline.device.type, dtype=torch.bfloat16):
|
| 67 |
+
latents_raw = pipeline(**pipeline_kwargs).images
|
| 68 |
+
|
| 69 |
+
# Retorna o tensor latente na CPU para liberar VRAM do worker para o próximo job
|
| 70 |
return latents_raw.cpu()
|
| 71 |
|
| 72 |
+
|
| 73 |
# ==============================================================================
|
| 74 |
+
# --- A CLASSE CLIENTE (Interface Pública para Geração de Vídeo Latente) ---
|
| 75 |
# ==============================================================================
|
| 76 |
|
| 77 |
class LtxAducPipeline:
|
| 78 |
"""
|
| 79 |
+
Cliente de alto nível para orquestrar a geração de vídeo latente.
|
| 80 |
+
Submete trabalhos de geração de chunks de vídeo ao LTXAducManager.
|
| 81 |
"""
|
| 82 |
def __init__(self):
|
| 83 |
+
logging.info("✅ LTX ADUC Pipeline (Client) initialized and ready to submit jobs.")
|
| 84 |
+
# O __init__ é limpo, sem carregar modelos.
|
| 85 |
self.FRAMES_ALIGNMENT = 8
|
| 86 |
+
pass
|
| 87 |
|
| 88 |
def _get_random_seed(self) -> int:
|
| 89 |
+
"""Sempre gera e retorna uma nova semente aleatória."""
|
| 90 |
return random.randint(0, 2**32 - 1)
|
| 91 |
|
| 92 |
def _align(self, dim: int, alignment: int = 8) -> int:
|
| 93 |
+
"""Alinha uma dimensão para o múltiplo mais próximo."""
|
| 94 |
return ((dim + alignment - 1) // alignment) * alignment
|
| 95 |
|
| 96 |
+
def __call__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
self,
|
| 98 |
prompt_list: List[str],
|
| 99 |
+
initial_conditioning_items: Optional[List[LatentConditioningItem]] = None,
|
| 100 |
+
height: int = 432,
|
| 101 |
+
width: int = 768,
|
| 102 |
+
duration_in_seconds: float = 4.0,
|
| 103 |
+
ltx_configs: Optional[Dict] = None
|
| 104 |
) -> Tuple[Optional[torch.Tensor], Optional[int]]:
|
| 105 |
+
"""
|
| 106 |
+
Ponto de entrada principal para gerar um vídeo latente completo.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
prompt_list: Lista de prompts, onde cada prompt é uma cena.
|
| 110 |
+
initial_conditioning_items: Lista de `LatentConditioningItem` para condicionar
|
| 111 |
+
a primeira cena.
|
| 112 |
+
height: Altura do vídeo.
|
| 113 |
+
width: Largura do vídeo.
|
| 114 |
+
duration_in_seconds: Duração total desejada do vídeo.
|
| 115 |
+
ltx_configs: Dicionário com configurações avançadas para o pipeline LTX
|
| 116 |
+
(guidance_scale, num_inference_steps, etc.).
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
Uma tupla contendo:
|
| 120 |
+
- O tensor latente final completo (na CPU).
|
| 121 |
+
- A semente principal usada para a geração.
|
| 122 |
+
"""
|
| 123 |
t0 = time.time()
|
| 124 |
+
logging.info(f"LTX Client received a generation job with {len(prompt_list)} scenes.")
|
| 125 |
+
|
| 126 |
+
if not prompt_list:
|
| 127 |
+
raise ValueError("A lista de prompts não pode estar vazia.")
|
| 128 |
+
|
| 129 |
used_seed = self._get_random_seed()
|
| 130 |
+
logging.info(f"Generation seed set to: {used_seed}")
|
| 131 |
|
| 132 |
+
# --- Lógica de Divisão de Chunks e Sobreposição ---
|
| 133 |
num_chunks = len(prompt_list)
|
| 134 |
total_frames = self._align(int(duration_in_seconds * 24))
|
| 135 |
+
frames_per_chunk_base = total_frames // num_chunks
|
| 136 |
overlap_frames = self._align(9) if num_chunks > 1 else 0
|
| 137 |
|
| 138 |
final_latents_list = []
|
| 139 |
+
overlap_condition_item: Optional[LatentConditioningItem] = None
|
| 140 |
|
| 141 |
for i, chunk_prompt in enumerate(prompt_list):
|
| 142 |
current_conditions = []
|
|
|
|
| 145 |
if overlap_condition_item:
|
| 146 |
current_conditions.append(overlap_condition_item)
|
| 147 |
|
| 148 |
+
# Calcula o número de frames para o chunk atual
|
| 149 |
num_frames_for_chunk = frames_per_chunk_base
|
| 150 |
+
if i == num_chunks - 1: # Último chunk pega o resto
|
| 151 |
processed_frames = sum(f.shape[2] for f in final_latents_list)
|
| 152 |
num_frames_for_chunk = total_frames - processed_frames
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
num_frames_for_chunk = self._align(num_frames_for_chunk)
|
| 155 |
+
|
| 156 |
+
# --- Submissão do Job para o Chunk Atual ---
|
| 157 |
+
chunk_latents = ltx_aduc_manager.submit_job(
|
| 158 |
+
job_type='ltx',
|
| 159 |
+
job_func=_job_generate_latent_chunk,
|
| 160 |
+
# Passa todos os argumentos necessários para a função de trabalho
|
| 161 |
+
prompt=chunk_prompt,
|
| 162 |
+
negative_prompt="blurry, low quality, bad anatomy, deformed", # Pode ser parametrizado
|
| 163 |
+
height=height,
|
| 164 |
+
width=width,
|
| 165 |
+
num_frames=num_frames_for_chunk,
|
| 166 |
+
seed=used_seed + i, # Semente diferente para cada chunk para variedade
|
| 167 |
+
conditioning_items=current_conditions,
|
| 168 |
+
ltx_configs=ltx_configs or {}
|
| 169 |
+
)
|
| 170 |
|
| 171 |
if chunk_latents is None:
|
| 172 |
+
logging.error(f"Failed to generate latents for scene {i+1}. Aborting generation.")
|
| 173 |
return None, used_seed
|
| 174 |
|
| 175 |
+
# --- Gerenciamento do "Eco Cinético" (Sobreposição) ---
|
| 176 |
if i < num_chunks - 1:
|
| 177 |
+
# Salva os últimos frames do chunk atual para condicionar o próximo
|
| 178 |
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
|
| 179 |
overlap_condition_item = LatentConditioningItem(
|
| 180 |
+
latent_tensor=overlap_latents,
|
| 181 |
+
media_frame_number=0, # Sempre condiciona o início do próximo chunk
|
| 182 |
+
conditioning_strength=1.0 # Condicionamento forte
|
| 183 |
+
)
|
| 184 |
+
# Adiciona o chunk atual sem a sobreposição
|
| 185 |
final_latents_list.append(chunk_latents[:, :, :-overlap_frames, :, :])
|
| 186 |
else:
|
| 187 |
+
# Adiciona o último chunk completo
|
| 188 |
final_latents_list.append(chunk_latents)
|
| 189 |
|
| 190 |
+
# Concatena todos os chunks de latentes em um único tensor
|
|
|
|
|
|
|
|
|
|
| 191 |
final_latents = torch.cat(final_latents_list, dim=2)
|
| 192 |
+
|
| 193 |
logging.info(f"LTX Client job finished in {time.time() - t0:.2f}s. Final latent shape: {final_latents.shape}")
|
| 194 |
|
| 195 |
return final_latents, used_seed
|
| 196 |
|
| 197 |
# --- INSTÂNCIA SINGLETON DO CLIENTE ---
|
| 198 |
+
try:
|
| 199 |
+
ltx_aduc_pipeline = LtxAducPipeline()
|
| 200 |
+
except Exception as e:
|
| 201 |
+
logging.critical("CRITICAL: Failed to initialize the LtxAducPipeline client.", exc_info=True)
|
| 202 |
+
ltx_aduc_pipeline = None
|
api/ltx/ltx_utils.py
CHANGED
|
@@ -1,263 +1,165 @@
|
|
| 1 |
# FILE: api/ltx/ltx_utils.py
|
| 2 |
-
# DESCRIPTION:
|
| 3 |
-
#
|
| 4 |
-
# and other stateless helper functions.
|
| 5 |
|
| 6 |
import os
|
| 7 |
import random
|
| 8 |
import json
|
| 9 |
import logging
|
|
|
|
| 10 |
import sys
|
| 11 |
from pathlib import Path
|
| 12 |
-
from typing import Dict, Tuple, Union
|
| 13 |
-
|
| 14 |
-
from PIL import Image
|
| 15 |
|
|
|
|
| 16 |
import torch
|
|
|
|
|
|
|
| 17 |
from safetensors import safe_open
|
| 18 |
from transformers import T5EncoderModel, T5Tokenizer
|
| 19 |
|
| 20 |
# ==============================================================================
|
| 21 |
-
# ---
|
| 22 |
# ==============================================================================
|
| 23 |
|
|
|
|
| 24 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def add_deps_to_path():
|
| 27 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 28 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 29 |
if repo_path not in sys.path:
|
| 30 |
sys.path.insert(0, repo_path)
|
| 31 |
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 32 |
|
|
|
|
| 33 |
add_deps_to_path()
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
try:
|
| 36 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
|
|
|
| 37 |
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 38 |
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 39 |
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 40 |
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
|
|
|
| 41 |
except ImportError as e:
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
# ==============================================================================
|
| 46 |
-
# ---
|
| 47 |
# ==============================================================================
|
| 48 |
|
| 49 |
-
def
|
| 50 |
-
"""
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
from q8_kernels.integration.patch_transformer import patch_diffusers_transformer as patch_transformer_for_q8_kernels
|
| 57 |
-
transformer = Transformer3DModel.from_pretrained(ckpt_path, dtype=torch.float8_e4m3fn)
|
| 58 |
-
patch_transformer_for_q8_kernels(transformer)
|
| 59 |
-
return transformer
|
| 60 |
-
except ImportError:
|
| 61 |
-
raise ValueError("Q8-Kernels not found. To use FP8 checkpoint, please install Q8 kernels from the project's wheels.")
|
| 62 |
-
elif precision == "bfloat16":
|
| 63 |
-
return Transformer3DModel.from_pretrained(ckpt_path).to(torch.bfloat16)
|
| 64 |
-
else:
|
| 65 |
-
return Transformer3DModel.from_pretrained(ckpt_path)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
|
|
|
| 79 |
metadata = f.metadata() or {}
|
| 80 |
config_str = metadata.get("config", "{}")
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
scheduler = RectifiedFlowScheduler.from_pretrained(checkpoint_path)
|
| 89 |
-
text_encoder = T5EncoderModel.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="text_encoder").to("cpu")
|
| 90 |
-
tokenizer = T5Tokenizer.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="tokenizer")
|
| 91 |
patchifier = SymmetricPatchifier(patch_size=1)
|
| 92 |
-
vae = CausalVideoAutoencoder.from_pretrained(checkpoint_path).to("cpu")
|
| 93 |
|
|
|
|
| 94 |
if precision == "bfloat16":
|
| 95 |
-
text_encoder.to(torch.bfloat16)
|
| 96 |
vae.to(torch.bfloat16)
|
| 97 |
-
|
| 98 |
-
|
|
|
|
| 99 |
pipeline = LTXVideoPipeline(
|
| 100 |
-
transformer=transformer,
|
| 101 |
-
|
| 102 |
-
text_encoder=text_encoder,
|
| 103 |
-
tokenizer=tokenizer,
|
| 104 |
-
scheduler=scheduler,
|
| 105 |
-
vae=vae, # VAE é incluído para que o pipeline possa ser auto-suficiente
|
| 106 |
allowed_inference_steps=allowed_inference_steps,
|
| 107 |
-
prompt_enhancer_image_caption_model=None,
|
| 108 |
-
|
| 109 |
-
prompt_enhancer_llm_model=None,
|
| 110 |
-
prompt_enhancer_llm_tokenizer=None,
|
| 111 |
)
|
| 112 |
-
|
| 113 |
-
return pipeline
|
| 114 |
|
| 115 |
-
# ==============================================================================
|
| 116 |
-
# --- FUNÇÕES AUXILIARES GENÉRICAS ---
|
| 117 |
-
# ==============================================================================
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# # FILE: api/ltx/ltx_utils.py
|
| 121 |
-
# DESCRIPTION: A pure utility library for the LTX ecosystem.
|
| 122 |
-
# Contains the official low-level builder function for the complete pipeline
|
| 123 |
-
# and other stateless helper functions.
|
| 124 |
-
|
| 125 |
-
import os
|
| 126 |
-
import random
|
| 127 |
-
import json
|
| 128 |
-
import logging
|
| 129 |
-
import sys
|
| 130 |
-
from pathlib import Path
|
| 131 |
-
from typing import Dict, Tuple
|
| 132 |
-
|
| 133 |
-
import torch
|
| 134 |
-
from safetensors import safe_open
|
| 135 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
| 136 |
-
|
| 137 |
-
# ==============================================================================
|
| 138 |
-
# --- CONFIGURAÇÃO DE PATH E IMPORTS DA BIBLIOTECA LTX ---
|
| 139 |
-
# ==============================================================================
|
| 140 |
-
|
| 141 |
-
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 142 |
-
|
| 143 |
-
def add_deps_to_path():
|
| 144 |
-
"""Adiciona o diretório do repositório LTX ao sys.path para importação de suas bibliotecas."""
|
| 145 |
-
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 146 |
-
if repo_path not in sys.path:
|
| 147 |
-
sys.path.insert(0, repo_path)
|
| 148 |
-
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 149 |
-
|
| 150 |
-
add_deps_to_path()
|
| 151 |
-
|
| 152 |
-
try:
|
| 153 |
-
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 154 |
-
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 155 |
-
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 156 |
-
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 157 |
-
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 158 |
-
except ImportError as e:
|
| 159 |
-
logging.critical("Failed to import a core LTX-Video library component.", exc_info=True)
|
| 160 |
-
raise ImportError(f"Could not import from LTX-Video library. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
|
| 161 |
-
|
| 162 |
-
# ==============================================================================
|
| 163 |
-
# --- FUNÇÃO HELPER 'create_transformer' (Essencial) ---
|
| 164 |
-
# ==============================================================================
|
| 165 |
-
|
| 166 |
-
def create_transformer(ckpt_path: str, precision: str) -> Transformer3DModel:
|
| 167 |
-
"""
|
| 168 |
-
Cria e carrega o modelo Transformer3D com a lógica de precisão correta,
|
| 169 |
-
incluindo suporte para a otimização float8_e4m3fn.
|
| 170 |
-
"""
|
| 171 |
-
if precision == "float8_e4m3fn":
|
| 172 |
-
try:
|
| 173 |
-
from q8_kernels.integration.patch_transformer import patch_diffusers_transformer as patch_transformer_for_q8_kernels
|
| 174 |
-
transformer = Transformer3DModel.from_pretrained(ckpt_path, dtype=torch.float8_e4m3fn)
|
| 175 |
-
patch_transformer_for_q8_kernels(transformer)
|
| 176 |
-
return transformer
|
| 177 |
-
except ImportError:
|
| 178 |
-
raise ValueError("Q8-Kernels not found. To use FP8 checkpoint, please install Q8 kernels from the project's wheels.")
|
| 179 |
-
elif precision == "bfloat16":
|
| 180 |
-
return Transformer3DModel.from_pretrained(ckpt_path).to(torch.bfloat16)
|
| 181 |
-
else:
|
| 182 |
-
return Transformer3DModel.from_pretrained(ckpt_path)
|
| 183 |
-
|
| 184 |
-
# ==============================================================================
|
| 185 |
-
# --- BUILDER DE BAIXO NÍVEL OFICIAL ---
|
| 186 |
-
# ==============================================================================
|
| 187 |
-
|
| 188 |
-
def build_complete_pipeline_on_cpu(checkpoint_path: str, config: Dict) -> LTXVideoPipeline:
|
| 189 |
-
"""
|
| 190 |
-
Constrói o pipeline LTX COMPLETO, incluindo o VAE, e o mantém na CPU.
|
| 191 |
-
Esta é a função de construção fundamental usada pelo LTXAducManager.
|
| 192 |
-
"""
|
| 193 |
-
logging.info(f"Building complete LTX pipeline from checkpoint: {Path(checkpoint_path).name}")
|
| 194 |
-
|
| 195 |
-
with safe_open(checkpoint_path, framework="pt") as f:
|
| 196 |
-
metadata = f.metadata() or {}
|
| 197 |
-
config_str = metadata.get("config", "{}")
|
| 198 |
-
allowed_inference_steps = json.loads(config_str).get("allowed_inference_steps")
|
| 199 |
-
|
| 200 |
-
precision = config.get("precision", "bfloat16")
|
| 201 |
-
|
| 202 |
-
# Usa a função helper correta para criar o transformer
|
| 203 |
-
transformer = create_transformer(checkpoint_path, precision).to("cpu")
|
| 204 |
-
|
| 205 |
-
scheduler = RectifiedFlowScheduler.from_pretrained(checkpoint_path)
|
| 206 |
-
text_encoder = T5EncoderModel.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="text_encoder").to("cpu")
|
| 207 |
-
tokenizer = T5Tokenizer.from_pretrained(config["text_encoder_model_name_or_path"], subfolder="tokenizer")
|
| 208 |
-
patchifier = SymmetricPatchifier(patch_size=1)
|
| 209 |
-
vae = CausalVideoAutoencoder.from_pretrained(checkpoint_path).to("cpu")
|
| 210 |
|
|
|
|
| 211 |
if precision == "bfloat16":
|
| 212 |
-
text_encoder.to(torch.bfloat16)
|
| 213 |
vae.to(torch.bfloat16)
|
| 214 |
-
# O transformer já foi convertido para bfloat16 dentro de create_transformer, se aplicável
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
)
|
| 229 |
-
|
| 230 |
-
|
| 231 |
|
| 232 |
# ==============================================================================
|
| 233 |
-
# --- FUNÇÕES AUXILIARES
|
| 234 |
# ==============================================================================
|
| 235 |
|
| 236 |
def seed_everything(seed: int):
|
| 237 |
-
"""
|
| 238 |
-
Define a semente para PyTorch, NumPy e Python para garantir reprodutibilidade.
|
| 239 |
-
"""
|
| 240 |
random.seed(seed)
|
| 241 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 242 |
np.random.seed(seed)
|
| 243 |
torch.manual_seed(seed)
|
| 244 |
torch.cuda.manual_seed_all(seed)
|
| 245 |
torch.backends.cudnn.deterministic = True
|
| 246 |
-
torch.backends.cudnn.benchmark =
|
| 247 |
-
|
| 248 |
def load_image_to_tensor_with_resize_and_crop(
|
| 249 |
image_input: Union[str, Image.Image],
|
| 250 |
target_height: int,
|
| 251 |
target_width: int,
|
| 252 |
) -> torch.Tensor:
|
| 253 |
-
"""
|
| 254 |
-
Carrega, redimensiona, corta e processa uma imagem para um tensor de pixel 5D,
|
| 255 |
-
normalizado para [-1, 1], pronto para ser enviado ao VAE para encoding.
|
| 256 |
-
"""
|
| 257 |
if isinstance(image_input, str):
|
| 258 |
image = Image.open(image_input).convert("RGB")
|
| 259 |
elif isinstance(image_input, Image.Image):
|
| 260 |
-
image = image_input
|
| 261 |
else:
|
| 262 |
raise ValueError("image_input must be a file path or a PIL Image object")
|
| 263 |
|
|
@@ -267,38 +169,22 @@ def load_image_to_tensor_with_resize_and_crop(
|
|
| 267 |
|
| 268 |
if aspect_ratio_frame > aspect_ratio_target:
|
| 269 |
new_width, new_height = int(input_height * aspect_ratio_target), input_height
|
| 270 |
-
x_start = (input_width - new_width) // 2
|
| 271 |
-
image = image.crop((x_start, 0, x_start + new_width, new_height))
|
| 272 |
else:
|
| 273 |
-
new_height = int(input_width / aspect_ratio_target)
|
| 274 |
-
y_start = (input_height - new_height) // 2
|
| 275 |
-
|
| 276 |
-
|
| 277 |
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
from ltx_video.pipelines import crf_compressor
|
| 284 |
-
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
|
| 285 |
-
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
|
| 286 |
-
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
|
| 287 |
-
except ImportError:
|
| 288 |
-
logging.warning("CRF Compressor not found. Skipping compression step.")
|
| 289 |
-
|
| 290 |
frame_tensor = (frame_tensor * 2.0) - 1.0
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
def seed_everything(seed: int):
|
| 295 |
-
"""
|
| 296 |
-
Define a semente para PyTorch, NumPy e Python para garantir reprodutibilidade.
|
| 297 |
-
"""
|
| 298 |
-
random.seed(seed)
|
| 299 |
-
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 300 |
-
np.random.seed(seed)
|
| 301 |
-
torch.manual_seed(seed)
|
| 302 |
-
torch.cuda.manual_seed_all(seed)
|
| 303 |
-
torch.backends.cudnn.deterministic = True
|
| 304 |
-
torch.backends.cudnn.benchmark = False
|
|
|
|
| 1 |
# FILE: api/ltx/ltx_utils.py
|
| 2 |
+
# DESCRIPTION: Comprehensive, self-contained utility module for the LTX pipeline.
|
| 3 |
+
# Handles dependency path injection, model loading, pipeline creation, and tensor preparation.
|
|
|
|
| 4 |
|
| 5 |
import os
|
| 6 |
import random
|
| 7 |
import json
|
| 8 |
import logging
|
| 9 |
+
import time
|
| 10 |
import sys
|
| 11 |
from pathlib import Path
|
| 12 |
+
from typing import Dict, Optional, Tuple, Union
|
| 13 |
+
from huggingface_hub import hf_hub_download
|
|
|
|
| 14 |
|
| 15 |
+
import numpy as np
|
| 16 |
import torch
|
| 17 |
+
import torchvision.transforms.functional as TVF
|
| 18 |
+
from PIL import Image
|
| 19 |
from safetensors import safe_open
|
| 20 |
from transformers import T5EncoderModel, T5Tokenizer
|
| 21 |
|
| 22 |
# ==============================================================================
|
| 23 |
+
# --- CRITICAL: DEPENDENCY PATH INJECTION ---
|
| 24 |
# ==============================================================================
|
| 25 |
|
| 26 |
+
# Define o caminho para o repositório clonado
|
| 27 |
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
|
| 28 |
+
LTX_REPO_ID = "Lightricks/LTX-Video"
|
| 29 |
+
CACHE_DIR = os.environ.get("HF_HOME")
|
| 30 |
+
|
| 31 |
|
| 32 |
def add_deps_to_path():
|
| 33 |
+
"""
|
| 34 |
+
Adiciona o diretório do repositório LTX ao sys.path para garantir que suas
|
| 35 |
+
bibliotecas possam ser importadas.
|
| 36 |
+
"""
|
| 37 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 38 |
if repo_path not in sys.path:
|
| 39 |
sys.path.insert(0, repo_path)
|
| 40 |
logging.info(f"[ltx_utils] LTX-Video repository added to sys.path: {repo_path}")
|
| 41 |
|
| 42 |
+
# Executa a função imediatamente para configurar o ambiente antes de qualquer importação.
|
| 43 |
add_deps_to_path()
|
| 44 |
|
| 45 |
+
|
| 46 |
+
# ==============================================================================
|
| 47 |
+
# --- IMPORTAÇÕES DA BIBLIOTECA LTX-VIDEO (Após configuração do path) ---
|
| 48 |
+
# ==============================================================================
|
| 49 |
try:
|
| 50 |
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
|
| 51 |
+
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
|
| 52 |
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 53 |
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 54 |
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 55 |
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 56 |
+
import ltx_video.pipelines.crf_compressor as crf_compressor
|
| 57 |
except ImportError as e:
|
| 58 |
+
raise ImportError(f"Could not import from LTX-Video library even after setting sys.path. Check repo integrity at '{LTX_VIDEO_REPO_DIR}'. Error: {e}")
|
| 59 |
+
|
| 60 |
|
| 61 |
# ==============================================================================
|
| 62 |
+
# --- FUNÇÕES DE CONSTRUÇÃO DE MODELO E PIPELINE ---
|
| 63 |
# ==============================================================================
|
| 64 |
|
| 65 |
+
def create_latent_upsampler(latent_upsampler_model_path: str, device: str) -> LatentUpsampler:
|
| 66 |
+
"""Loads the Latent Upsampler model from a checkpoint path."""
|
| 67 |
+
logging.info(f"Loading Latent Upsampler from: {latent_upsampler_model_path} to device: {device}")
|
| 68 |
+
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
|
| 69 |
+
latent_upsampler.to(device)
|
| 70 |
+
latent_upsampler.eval()
|
| 71 |
+
return latent_upsampler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
def build_ltx_pipeline_on_cpu(config: Dict) -> Tuple[LTXVideoPipeline, Optional[torch.nn.Module]]:
|
| 74 |
+
"""Builds the complete LTX pipeline and upsampler on the CPU."""
|
| 75 |
+
t0 = time.perf_counter()
|
| 76 |
+
logging.info("Building LTX pipeline on CPU...")
|
| 77 |
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
ckpt_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["checkpoint_path"], cache_dir=CACHE_DIR)
|
| 81 |
+
ckpt_path = Path(ckpt_path_str)
|
| 82 |
+
if not ckpt_path.is_file():
|
| 83 |
+
raise FileNotFoundError(f"Main checkpoint file not found: {ckpt_path}")
|
| 84 |
+
|
| 85 |
+
logging.info(f"Building LTX pipeline ckpt:{ckpt_path_str}")
|
| 86 |
|
| 87 |
+
|
| 88 |
+
with safe_open(ckpt_path, framework="pt") as f:
|
| 89 |
metadata = f.metadata() or {}
|
| 90 |
config_str = metadata.get("config", "{}")
|
| 91 |
+
configs = json.loads(config_str)
|
| 92 |
+
allowed_inference_steps = configs.get("allowed_inference_steps")
|
| 93 |
|
| 94 |
+
|
| 95 |
+
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")
|
| 96 |
+
transformer = Transformer3DModel.from_pretrained(ckpt_path).to("cpu")
|
| 97 |
+
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
|
| 98 |
|
| 99 |
+
text_encoder_path = config["text_encoder_model_name_or_path"]
|
| 100 |
+
text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder").to("cpu")
|
| 101 |
+
tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer")
|
|
|
|
|
|
|
|
|
|
| 102 |
patchifier = SymmetricPatchifier(patch_size=1)
|
|
|
|
| 103 |
|
| 104 |
+
precision = config.get("precision", "bfloat16")
|
| 105 |
if precision == "bfloat16":
|
|
|
|
| 106 |
vae.to(torch.bfloat16)
|
| 107 |
+
transformer.to(torch.bfloat16)
|
| 108 |
+
text_encoder.to(torch.bfloat16)
|
| 109 |
+
|
| 110 |
pipeline = LTXVideoPipeline(
|
| 111 |
+
transformer=transformer, patchifier=patchifier, text_encoder=text_encoder,
|
| 112 |
+
tokenizer=tokenizer, scheduler=scheduler, vae=vae,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
allowed_inference_steps=allowed_inference_steps,
|
| 114 |
+
prompt_enhancer_image_caption_model=None, prompt_enhancer_image_caption_processor=None,
|
| 115 |
+
prompt_enhancer_llm_model=None, prompt_enhancer_llm_tokenizer=None,
|
|
|
|
|
|
|
| 116 |
)
|
|
|
|
|
|
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")
|
| 120 |
if precision == "bfloat16":
|
|
|
|
| 121 |
vae.to(torch.bfloat16)
|
|
|
|
| 122 |
|
| 123 |
+
latent_upsampler = None
|
| 124 |
+
if config.get("spatial_upscaler_model_path"):
|
| 125 |
+
spatial_path = config["spatial_upscaler_model_path"]
|
| 126 |
+
spatial_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["spatial_upscaler_model_path"], cache_dir=CACHE_DIR)
|
| 127 |
+
spatial_path = Path(spatial_path_str)
|
| 128 |
+
if not spatial_path.is_file():
|
| 129 |
+
raise FileNotFoundError(f"Main checkpoint upscaler file not found: {spatial_path_str}")
|
| 130 |
+
logging.info(f"Building UPSCALER pipeline ckpt:{spatial_path_str}")
|
| 131 |
+
latent_upsampler = create_latent_upsampler(spatial_path, device="cpu")
|
| 132 |
+
if precision == "bfloat16":
|
| 133 |
+
latent_upsampler.to(torch.bfloat16)
|
| 134 |
+
|
| 135 |
+
logging.info(f"LTX pipeline built on CPU in {time.perf_counter() - t0:.2f}s")
|
| 136 |
+
return pipeline, latent_upsampler, vae
|
| 137 |
+
|
| 138 |
|
| 139 |
# ==============================================================================
|
| 140 |
+
# --- FUNÇÕES AUXILIARES (Seed, Preparação de Imagem) ---
|
| 141 |
# ==============================================================================
|
| 142 |
|
| 143 |
def seed_everything(seed: int):
|
| 144 |
+
"""Sets the seed for reproducibility."""
|
|
|
|
|
|
|
| 145 |
random.seed(seed)
|
| 146 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 147 |
np.random.seed(seed)
|
| 148 |
torch.manual_seed(seed)
|
| 149 |
torch.cuda.manual_seed_all(seed)
|
| 150 |
torch.backends.cudnn.deterministic = True
|
| 151 |
+
torch.backends.cudnn.benchmark = False
|
| 152 |
+
|
| 153 |
def load_image_to_tensor_with_resize_and_crop(
|
| 154 |
image_input: Union[str, Image.Image],
|
| 155 |
target_height: int,
|
| 156 |
target_width: int,
|
| 157 |
) -> torch.Tensor:
|
| 158 |
+
"""Loads and processes an image into a 5D pixel tensor compatible with the LTX pipeline."""
|
|
|
|
|
|
|
|
|
|
| 159 |
if isinstance(image_input, str):
|
| 160 |
image = Image.open(image_input).convert("RGB")
|
| 161 |
elif isinstance(image_input, Image.Image):
|
| 162 |
+
image = image_input
|
| 163 |
else:
|
| 164 |
raise ValueError("image_input must be a file path or a PIL Image object")
|
| 165 |
|
|
|
|
| 169 |
|
| 170 |
if aspect_ratio_frame > aspect_ratio_target:
|
| 171 |
new_width, new_height = int(input_height * aspect_ratio_target), input_height
|
| 172 |
+
x_start, y_start = (input_width - new_width) // 2, 0
|
|
|
|
| 173 |
else:
|
| 174 |
+
new_width, new_height = input_width, int(input_width / aspect_ratio_target)
|
| 175 |
+
x_start, y_start = 0, (input_height - new_height) // 2
|
| 176 |
+
|
| 177 |
+
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
|
| 178 |
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
|
| 179 |
+
|
| 180 |
+
frame_tensor = TVF.to_tensor(image) # PIL -> tensor (C, H, W) in [0, 1] range
|
| 181 |
+
frame_tensor = TVF.gaussian_blur(frame_tensor, kernel_size=(3, 3))
|
| 182 |
|
| 183 |
+
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
|
| 184 |
+
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
|
| 185 |
+
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
|
| 186 |
+
# Normalize to [-1, 1] range, which the VAE expects for encoding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
frame_tensor = (frame_tensor * 2.0) - 1.0
|
| 188 |
+
|
| 189 |
+
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
|
| 190 |
+
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
api/ltx/vae_aduc_pipeline.py
CHANGED
|
@@ -5,39 +5,36 @@
|
|
| 5 |
import logging
|
| 6 |
import time
|
| 7 |
import torch
|
| 8 |
-
import os
|
| 9 |
import torchvision.transforms.functional as TVF
|
| 10 |
from PIL import Image
|
| 11 |
-
from typing import List, Union, Tuple, Literal
|
| 12 |
from dataclasses import dataclass
|
| 13 |
-
|
|
|
|
| 14 |
import sys
|
|
|
|
| 15 |
|
| 16 |
-
# O cliente importa o MANAGER para submeter os trabalhos ao pool de workers.
|
| 17 |
from api.ltx.ltx_aduc_manager import ltx_aduc_manager
|
| 18 |
|
| 19 |
-
|
| 20 |
-
LTX_VIDEO_REPO_DIR =
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 29 |
-
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
| 30 |
-
import ltx_video.pipelines.crf_compressor as crf_compressor
|
| 31 |
|
| 32 |
# ==============================================================================
|
| 33 |
-
# --- DEFINIÇÕES DE ESTRUTURA E HELPERS ---
|
| 34 |
# ==============================================================================
|
| 35 |
|
| 36 |
@dataclass
|
| 37 |
class LatentConditioningItem:
|
| 38 |
"""
|
| 39 |
Estrutura de dados para passar latentes condicionados entre serviços.
|
| 40 |
-
O tensor latente é mantido na CPU para economizar VRAM
|
| 41 |
"""
|
| 42 |
latent_tensor: torch.Tensor
|
| 43 |
media_frame_number: int
|
|
@@ -50,32 +47,32 @@ def load_image_to_tensor_with_resize_and_crop(
|
|
| 50 |
) -> torch.Tensor:
|
| 51 |
"""
|
| 52 |
Carrega e processa uma imagem para um tensor de pixel 5D, normalizado para [-1, 1],
|
| 53 |
-
pronto para ser enviado ao VAE
|
| 54 |
"""
|
| 55 |
if isinstance(image_input, str):
|
| 56 |
image = Image.open(image_input).convert("RGB")
|
| 57 |
elif isinstance(image_input, Image.Image):
|
| 58 |
-
image = image_input
|
| 59 |
else:
|
| 60 |
raise ValueError("image_input must be a file path or a PIL Image object")
|
| 61 |
|
| 62 |
-
# Lógica de corte e redimensionamento para manter a proporção
|
| 63 |
input_width, input_height = image.size
|
| 64 |
aspect_ratio_target = target_width / target_height
|
| 65 |
aspect_ratio_frame = input_width / input_height
|
|
|
|
| 66 |
if aspect_ratio_frame > aspect_ratio_target:
|
| 67 |
new_width, new_height = int(input_height * aspect_ratio_target), input_height
|
| 68 |
-
x_start = (input_width - new_width) // 2
|
| 69 |
-
image = image.crop((x_start, 0, x_start + new_width, new_height))
|
| 70 |
else:
|
| 71 |
-
new_height = int(input_width / aspect_ratio_target)
|
| 72 |
-
y_start = (input_height - new_height) // 2
|
| 73 |
-
|
| 74 |
-
|
| 75 |
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
|
| 76 |
-
|
| 77 |
-
# Conversão para tensor e normalização
|
| 78 |
frame_tensor = TVF.to_tensor(image)
|
|
|
|
|
|
|
| 79 |
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
|
| 80 |
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
|
| 81 |
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
|
|
@@ -83,20 +80,21 @@ def load_image_to_tensor_with_resize_and_crop(
|
|
| 83 |
frame_tensor = (frame_tensor * 2.0) - 1.0
|
| 84 |
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
| 85 |
|
|
|
|
| 86 |
# ==============================================================================
|
| 87 |
-
# --- FUNÇÕES DE TRABALHO (Jobs a serem executados no Pool
|
| 88 |
# ==============================================================================
|
| 89 |
|
| 90 |
def _job_encode_media(vae: CausalVideoAutoencoder, pixel_tensor: torch.Tensor) -> torch.Tensor:
|
| 91 |
-
"""
|
| 92 |
device = vae.device
|
| 93 |
dtype = vae.dtype
|
| 94 |
pixel_tensor_gpu = pixel_tensor.to(device, dtype=dtype)
|
| 95 |
latents = vae_encode(pixel_tensor_gpu, vae, vae_per_channel_normalize=True)
|
| 96 |
return latents.cpu()
|
| 97 |
|
| 98 |
-
def
|
| 99 |
-
"""
|
| 100 |
device = vae.device
|
| 101 |
dtype = vae.dtype
|
| 102 |
latent_tensor_gpu = latent_tensor.to(device, dtype=dtype)
|
|
@@ -108,17 +106,14 @@ def _job_decode_latent(vae: CausalVideoAutoencoder, latent_tensor: torch.Tensor)
|
|
| 108 |
# ==============================================================================
|
| 109 |
|
| 110 |
class VaeAducPipeline:
|
| 111 |
-
"""
|
| 112 |
-
Cliente de alto nível para orquestrar todas as tarefas relacionadas ao VAE.
|
| 113 |
-
Ele define a lógica de negócios e submete os trabalhos ao LTXAducManager.
|
| 114 |
-
"""
|
| 115 |
def __init__(self):
|
| 116 |
logging.info("✅ VAE ADUC Pipeline (Client) initialized and ready to submit jobs.")
|
| 117 |
pass
|
| 118 |
|
| 119 |
def __call__(
|
| 120 |
self,
|
| 121 |
-
media: Union[torch.Tensor, List[Union[Image.Image,
|
| 122 |
task: Literal['encode', 'decode', 'create_conditioning_items'],
|
| 123 |
target_resolution: Optional[Tuple[int, int]] = (512, 512),
|
| 124 |
conditioning_params: Optional[List[Tuple[int, float]]] = None
|
|
@@ -131,7 +126,7 @@ class VaeAducPipeline:
|
|
| 131 |
task: A tarefa a executar ('encode', 'decode', 'create_conditioning_items').
|
| 132 |
target_resolution: A resolução (altura, largura) para o pré-processamento.
|
| 133 |
conditioning_params: Para 'create_conditioning_items', uma lista de tuplas
|
| 134 |
-
(frame_number, strength)
|
| 135 |
|
| 136 |
Returns:
|
| 137 |
O resultado da tarefa, sempre na CPU.
|
|
@@ -142,13 +137,16 @@ class VaeAducPipeline:
|
|
| 142 |
if task == 'encode':
|
| 143 |
if not isinstance(media, list): media = [media]
|
| 144 |
pixel_tensors = [load_image_to_tensor_with_resize_and_crop(m, target_resolution[0], target_resolution[1]) for m in media]
|
| 145 |
-
results = [
|
|
|
|
|
|
|
|
|
|
| 146 |
return results
|
| 147 |
|
| 148 |
elif task == 'decode':
|
| 149 |
if not isinstance(media, torch.Tensor):
|
| 150 |
-
raise TypeError("Para
|
| 151 |
-
return ltx_aduc_manager.submit_job(job_type='vae', job_func=
|
| 152 |
|
| 153 |
elif task == 'create_conditioning_items':
|
| 154 |
if not isinstance(media, list) or not isinstance(conditioning_params, list) or len(media) != len(conditioning_params):
|
|
|
|
| 5 |
import logging
|
| 6 |
import time
|
| 7 |
import torch
|
|
|
|
| 8 |
import torchvision.transforms.functional as TVF
|
| 9 |
from PIL import Image
|
| 10 |
+
from typing import List, Union, Tuple, Literal
|
| 11 |
from dataclasses import dataclass
|
| 12 |
+
import os
|
| 13 |
+
import subprocess
|
| 14 |
import sys
|
| 15 |
+
from pathlib import Path
|
| 16 |
|
|
|
|
| 17 |
from api.ltx.ltx_aduc_manager import ltx_aduc_manager
|
| 18 |
|
| 19 |
+
DEPS_DIR = Path("/data")
|
| 20 |
+
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 21 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 22 |
+
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 23 |
+
sys.path.insert(0, repo_path)
|
| 24 |
+
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
|
| 25 |
+
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 26 |
+
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
|
| 27 |
+
import ltx_video.pipelines.crf_compressor as crf_compressor
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# ==============================================================================
|
| 30 |
+
# --- DEFINIÇÕES DE ESTRUTURA E HELPERS (Importadas ou movidas para cá) ---
|
| 31 |
# ==============================================================================
|
| 32 |
|
| 33 |
@dataclass
|
| 34 |
class LatentConditioningItem:
|
| 35 |
"""
|
| 36 |
Estrutura de dados para passar latentes condicionados entre serviços.
|
| 37 |
+
O tensor latente é mantido na CPU para economizar VRAM.
|
| 38 |
"""
|
| 39 |
latent_tensor: torch.Tensor
|
| 40 |
media_frame_number: int
|
|
|
|
| 47 |
) -> torch.Tensor:
|
| 48 |
"""
|
| 49 |
Carrega e processa uma imagem para um tensor de pixel 5D, normalizado para [-1, 1],
|
| 50 |
+
pronto para ser enviado ao VAE.
|
| 51 |
"""
|
| 52 |
if isinstance(image_input, str):
|
| 53 |
image = Image.open(image_input).convert("RGB")
|
| 54 |
elif isinstance(image_input, Image.Image):
|
| 55 |
+
image = image_input
|
| 56 |
else:
|
| 57 |
raise ValueError("image_input must be a file path or a PIL Image object")
|
| 58 |
|
|
|
|
| 59 |
input_width, input_height = image.size
|
| 60 |
aspect_ratio_target = target_width / target_height
|
| 61 |
aspect_ratio_frame = input_width / input_height
|
| 62 |
+
|
| 63 |
if aspect_ratio_frame > aspect_ratio_target:
|
| 64 |
new_width, new_height = int(input_height * aspect_ratio_target), input_height
|
| 65 |
+
x_start, y_start = (input_width - new_width) // 2, 0
|
|
|
|
| 66 |
else:
|
| 67 |
+
new_width, new_height = input_width, int(input_width / aspect_ratio_target)
|
| 68 |
+
x_start, y_start = 0, (input_height - new_height) // 2
|
| 69 |
+
|
| 70 |
+
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
|
| 71 |
image = image.resize((target_width, target_height), Image.Resampling.LANCZOS)
|
| 72 |
+
|
|
|
|
| 73 |
frame_tensor = TVF.to_tensor(image)
|
| 74 |
+
frame_tensor = TVF.gaussian_blur(frame_tensor, kernel_size=(3, 3))
|
| 75 |
+
|
| 76 |
frame_tensor_hwc = frame_tensor.permute(1, 2, 0)
|
| 77 |
frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc)
|
| 78 |
frame_tensor = frame_tensor_hwc.permute(2, 0, 1)
|
|
|
|
| 80 |
frame_tensor = (frame_tensor * 2.0) - 1.0
|
| 81 |
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
| 82 |
|
| 83 |
+
|
| 84 |
# ==============================================================================
|
| 85 |
+
# --- FUNÇÕES DE TRABALHO (Jobs a serem executados no Pool) ---
|
| 86 |
# ==============================================================================
|
| 87 |
|
| 88 |
def _job_encode_media(vae: CausalVideoAutoencoder, pixel_tensor: torch.Tensor) -> torch.Tensor:
|
| 89 |
+
"""Função de trabalho genérica para codificar um tensor de pixel."""
|
| 90 |
device = vae.device
|
| 91 |
dtype = vae.dtype
|
| 92 |
pixel_tensor_gpu = pixel_tensor.to(device, dtype=dtype)
|
| 93 |
latents = vae_encode(pixel_tensor_gpu, vae, vae_per_channel_normalize=True)
|
| 94 |
return latents.cpu()
|
| 95 |
|
| 96 |
+
def _job_decode_latent_to_pixels(vae: CausalVideoAutoencoder, latent_tensor: torch.Tensor) -> torch.Tensor:
|
| 97 |
+
"""Função de trabalho para decodificar um tensor latente."""
|
| 98 |
device = vae.device
|
| 99 |
dtype = vae.dtype
|
| 100 |
latent_tensor_gpu = latent_tensor.to(device, dtype=dtype)
|
|
|
|
| 106 |
# ==============================================================================
|
| 107 |
|
| 108 |
class VaeAducPipeline:
|
| 109 |
+
"""Cliente de alto nível para orquestrar todas as tarefas de VAE."""
|
|
|
|
|
|
|
|
|
|
| 110 |
def __init__(self):
|
| 111 |
logging.info("✅ VAE ADUC Pipeline (Client) initialized and ready to submit jobs.")
|
| 112 |
pass
|
| 113 |
|
| 114 |
def __call__(
|
| 115 |
self,
|
| 116 |
+
media: Union[torch.Tensor, List[Union[Image.Image, torch.Tensor]]],
|
| 117 |
task: Literal['encode', 'decode', 'create_conditioning_items'],
|
| 118 |
target_resolution: Optional[Tuple[int, int]] = (512, 512),
|
| 119 |
conditioning_params: Optional[List[Tuple[int, float]]] = None
|
|
|
|
| 126 |
task: A tarefa a executar ('encode', 'decode', 'create_conditioning_items').
|
| 127 |
target_resolution: A resolução (altura, largura) para o pré-processamento.
|
| 128 |
conditioning_params: Para 'create_conditioning_items', uma lista de tuplas
|
| 129 |
+
(frame_number, strength) correspondente a cada item de mídia.
|
| 130 |
|
| 131 |
Returns:
|
| 132 |
O resultado da tarefa, sempre na CPU.
|
|
|
|
| 137 |
if task == 'encode':
|
| 138 |
if not isinstance(media, list): media = [media]
|
| 139 |
pixel_tensors = [load_image_to_tensor_with_resize_and_crop(m, target_resolution[0], target_resolution[1]) for m in media]
|
| 140 |
+
results = []
|
| 141 |
+
for pt in pixel_tensors:
|
| 142 |
+
latent = ltx_aduc_manager.submit_job(job_type='vae', job_func=_job_encode_media, pixel_tensor=pt)
|
| 143 |
+
results.append(latent)
|
| 144 |
return results
|
| 145 |
|
| 146 |
elif task == 'decode':
|
| 147 |
if not isinstance(media, torch.Tensor):
|
| 148 |
+
raise TypeError("Para 'decode', 'media' deve ser um único tensor latente.")
|
| 149 |
+
return ltx_aduc_manager.submit_job(job_type='vae', job_func=_job_decode_latent_to_pixels, latent_tensor=media)
|
| 150 |
|
| 151 |
elif task == 'create_conditioning_items':
|
| 152 |
if not isinstance(media, list) or not isinstance(conditioning_params, list) or len(media) != len(conditioning_params):
|