# FILE: api/ltx/ltx_utils.py # DESCRIPTION: Comprehensive, self-contained utility module for the LTX pipeline. # Handles dependency path injection, model loading, pipeline creation, and tensor preparation. import os import random import json import time import sys from pathlib import Path from typing import Dict, Optional, Tuple, Union from huggingface_hub import hf_hub_download import numpy as np import torch import torchvision.transforms.functional as TVF from PIL import Image from safetensors import safe_open from transformers import T5EncoderModel, T5Tokenizer import logging import warnings warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", message=".*") from huggingface_hub import logging as ll ll.set_verbosity_error() ll.set_verbosity_warning() ll.set_verbosity_info() from utils.debug_utils import log_function_io ll.set_verbosity_debug() # ============================================================================== # --- CRITICAL: DEPENDENCY PATH INJECTION --- # ============================================================================== # Define o caminho para o repositório clonado LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video") LTX_REPO_ID = "Lightricks/LTX-Video" CACHE_DIR = os.environ.get("HF_HOME") # ============================================================================== # --- IMPORTAÇÕES DA BIBLIOTECA LTX-VIDEO (Após configuração do path) --- # ============================================================================== repo_path = str(LTX_VIDEO_REPO_DIR.resolve()) if repo_path not in sys.path: sys.path.insert(0, repo_path) from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder from ltx_video.models.transformers.transformer3d import Transformer3DModel from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier from ltx_video.schedulers.rf import RectifiedFlowScheduler import ltx_video.pipelines.crf_compressor as crf_compressor # ============================================================================== # --- FUNÇÕES DE CONSTRUÇÃO DE MODELO E PIPELINE --- # ============================================================================== @log_function_io def create_latent_upsampler(latent_upsampler_model_path: str, device: str) -> LatentUpsampler: """Loads the Latent Upsampler model from a checkpoint path.""" logging.info(f"Loading Latent Upsampler from: {latent_upsampler_model_path} to device: {device}") latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path) latent_upsampler.to(device) latent_upsampler.eval() return latent_upsampler @log_function_io def build_ltx_pipeline_on_cpu(config: Dict) -> Tuple[LTXVideoPipeline, Optional[torch.nn.Module]]: """Builds the complete LTX pipeline and upsampler on the CPU.""" t0 = time.perf_counter() logging.info("Building LTX pipeline on CPU...") ckpt_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["checkpoint_path"], cache_dir=CACHE_DIR) ckpt_path = Path(ckpt_path_str) if not ckpt_path.is_file(): raise FileNotFoundError(f"Main checkpoint file not found: {ckpt_path}") with safe_open(ckpt_path, framework="pt") as f: metadata = f.metadata() or {} config_str = metadata.get("config", "{}") configs = json.loads(config_str) allowed_inference_steps = configs.get("allowed_inference_steps") vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu") transformer = Transformer3DModel.from_pretrained(ckpt_path).to("cpu") scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path) text_encoder_path = config["text_encoder_model_name_or_path"] text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder").to("cpu") tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer") patchifier = SymmetricPatchifier(patch_size=1) precision = config.get("precision", "bfloat16") if precision == "bfloat16": vae.to(torch.bfloat16) transformer.to(torch.bfloat16) text_encoder.to(torch.bfloat16) pipeline = LTXVideoPipeline( transformer=transformer, patchifier=patchifier, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, vae=vae, allowed_inference_steps=allowed_inference_steps, prompt_enhancer_image_caption_model=None, prompt_enhancer_image_caption_processor=None, prompt_enhancer_llm_model=None, prompt_enhancer_llm_tokenizer=None, ) latent_upsampler = None if config.get("spatial_upscaler_model_path"): spatial_path_str = hf_hub_download(repo_id=LTX_REPO_ID, filename=config["spatial_upscaler_model_path"], cache_dir=CACHE_DIR) spatial_path = Path(spatial_path_str) if not ckpt_path.is_file(): raise FileNotFoundError(f"Main checkpoint file not found: {spatial_path}") latent_upsampler = create_latent_upsampler(spatial_path, device="cpu") if precision == "bfloat16": latent_upsampler.to(torch.bfloat16) logging.info(f"LTX pipeline built on CPU in {time.perf_counter() - t0:.2f}s") return pipeline, latent_upsampler # ============================================================================== # --- FUNÇÕES AUXILIARES (Seed, Preparação de Imagem) --- # ============================================================================== @log_function_io def seed_everything(seed: int): """Sets the seed for reproducibility.""" random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False @log_function_io def load_image_to_tensor_with_resize_and_crop( image_input: Union[str, Image.Image], target_height: int, target_width: int, ) -> torch.Tensor: """Loads and processes an image into a 5D pixel tensor compatible with the LTX pipeline.""" if isinstance(image_input, str): image = Image.open(image_input).convert("RGB") elif isinstance(image_input, Image.Image): image = image_input else: raise ValueError("image_input must be a file path or a PIL Image object") input_width, input_height = image.size aspect_ratio_target = target_width / target_height aspect_ratio_frame = input_width / input_height if aspect_ratio_frame > aspect_ratio_target: new_width, new_height = int(input_height * aspect_ratio_target), input_height x_start, y_start = (input_width - new_width) // 2, 0 else: new_width, new_height = input_width, int(input_width / aspect_ratio_target) x_start, y_start = 0, (input_height - new_height) // 2 image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height)) image = image.resize((target_width, target_height), Image.Resampling.LANCZOS) frame_tensor = TVF.to_tensor(image) # PIL -> tensor (C, H, W) in [0, 1] range frame_tensor = TVF.gaussian_blur(frame_tensor, kernel_size=(3, 3)) frame_tensor_hwc = frame_tensor.permute(1, 2, 0) frame_tensor_hwc = crf_compressor.compress(frame_tensor_hwc) frame_tensor = frame_tensor_hwc.permute(2, 0, 1) # Normalize to [-1, 1] range, which the VAE expects for encoding frame_tensor = (frame_tensor * 2.0) - 1.0 # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width) return frame_tensor.unsqueeze(0).unsqueeze(2)