File size: 13,297 Bytes
ac23084
 
1797675
ac23084
 
 
 
 
 
 
 
1797675
ac23084
 
 
1797675
ac23084
 
1797675
ac23084
 
 
 
 
 
 
 
 
 
 
 
eb62b92
ac23084
 
 
 
 
1797675
ac23084
 
 
 
 
 
 
1797675
ac23084
 
 
 
 
1797675
ac23084
 
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac23084
 
1797675
ac23084
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac23084
 
 
 
 
 
1797675
 
 
ac23084
eb62b92
1797675
eb62b92
1797675
 
 
 
 
8ce4529
1797675
 
 
 
 
 
 
 
 
 
 
 
8ce4529
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac23084
1797675
 
 
ac23084
1797675
ac23084
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce4529
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac23084
1797675
ac23084
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# video_service.py

# --- 1. IMPORTAÇÕES ---
import torch
import numpy as np
import random
import os
import yaml
from pathlib import Path
import imageio
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess

# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---

def run_setup():
    """Executa o script setup.py para clonar as dependências necessárias."""
    setup_script_path = "setup.py"
    if not os.path.exists(setup_script_path):
        print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.")
        return
    try:
        print("--- Executando setup.py para garantir que as dependências estão presentes ---")
        subprocess.run([sys.executable, setup_script_path], check=True)
        print("--- Setup concluído com sucesso ---")
    except subprocess.CalledProcessError as e:
        print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.")
        sys.exit(1)

DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
    run_setup()

def add_deps_to_path():
    """Adiciona o repositório clonado ao sys.path para que suas bibliotecas possam ser importadas."""
    if not LTX_VIDEO_REPO_DIR.exists():
        raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.")
    if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))

add_deps_to_path()

# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
from inference import (
    create_ltx_video_pipeline, create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop, seed_everething,
    calculate_padding, load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

# --- 4. FUNÇÕES HELPER DE LOG ---
def log_tensor_info(tensor, name="Tensor"):
    if not isinstance(tensor, torch.Tensor):
        print(f"\n[INFO] O item '{name}' não é um tensor para logar.")
        return
    print(f"\n--- Informações do Tensor: {name} ---")
    print(f"  - Shape: {tensor.shape}")
    print(f"  - Dtype: {tensor.dtype}")
    print(f"  - Device: {tensor.device}")
    if tensor.numel() > 0:
        print(f"  - Min valor: {tensor.min().item():.4f}")
        print(f"  - Max valor: {tensor.max().item():.4f}")
        print(f"  - Média: {tensor.mean().item():.4f}")
    else:
        print("  - O tensor está vazio, sem estatísticas.")
    print("------------------------------------------\n")

# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
class VideoService:
    def __init__(self):
        print("Inicializando VideoService...")
        self.config = self._load_config()
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.last_memory_reserved_mb = 0
        self.pipeline, self.latent_upsampler = self._load_models()
        print(f"Movendo modelos para o dispositivo de inferência: {self.device}")
        self.pipeline.to(self.device)
        if self.latent_upsampler:
            self.latent_upsampler.to(self.device)
        if self.device == "cuda":
            torch.cuda.empty_cache()
            self._log_gpu_memory("Após carregar modelos")
        print("VideoService pronto para uso.")

    def _log_gpu_memory(self, stage_name: str):
        if self.device != "cuda": return
        current_reserved_b = torch.cuda.memory_reserved()
        current_reserved_mb = current_reserved_b / (1024 ** 2)
        total_memory_b = torch.cuda.get_device_properties(0).total_memory
        total_memory_mb = total_memory_b / (1024 ** 2)
        peak_reserved_mb = torch.cuda.max_memory_reserved() / (1024 ** 2)
        delta_mb = current_reserved_mb - self.last_memory_reserved_mb
        print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} ---")
        print(f"  - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB")
        print(f"  - Variação desde o último log: {delta_mb:+.2f} MB")
        if peak_reserved_mb > self.last_memory_reserved_mb:
            print(f"  - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB")
        print("--------------------------------------------------\n")
        self.last_memory_reserved_mb = current_reserved_mb

    def _load_config(self):
        config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
        with open(config_file_path, "r") as file:
            return yaml.safe_load(file)

    def _load_models(self):
        models_dir = "downloaded_models_gradio"
        Path(models_dir).mkdir(parents=True, exist_ok=True)
        LTX_REPO = "Lightricks/LTX-Video"
        distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=models_dir, cache_dir=os.getenv("HF_HOME_CACHE"), token=os.getenv("HF_TOKEN"))
        self.config["checkpoint_path"] = distilled_model_path
        spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], local_dir=models_dir, cache_dir=os.getenv("HF_HOME_CACHE"), token=os.getenv("HF_TOKEN"))
        self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
        pipeline = create_ltx_video_pipeline(ckpt_path=self.config["checkpoint_path"], precision=self.config["precision"], text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], sampler=self.config["sampler"], device="cpu", enhance_prompt=False, prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"])
        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
        return pipeline, latent_upsampler
        
    def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
        tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
        tensor = torch.nn.functional.pad(tensor, padding_values)
        return tensor.to(self.device)

    def generate(self, prompt, negative_prompt, mode="text-to-video",
                 start_image_filepath=None,
                 middle_image_filepath=None, middle_frame_number=None, middle_image_weight=1.0,
                 end_image_filepath=None, end_image_weight=1.0,
                 input_video_filepath=None, height=512, width=704, duration=2.0,
                 frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=3.0,
                 improve_texture=True, progress_callback=None):
        if self.device == "cuda":
            torch.cuda.empty_cache()
            torch.cuda.reset_peak_memory_stats()
        self._log_gpu_memory("Início da Geração")

        if mode == "image-to-video" and not start_image_filepath:
            raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
        if mode == "video-to-video" and not input_video_filepath:
            raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")

        used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
        seed_everething(used_seed)

        FPS = 24.0
        MAX_NUM_FRAMES = 257
        target_frames_rounded = round(duration * FPS)
        n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
        actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
        
        height_padded = ((height - 1) // 32 + 1) * 32
        width_padded = ((width - 1) // 32 + 1) * 32
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        
        generator = torch.Generator(device=self.device).manual_seed(used_seed)
        
        conditioning_items = []
        if mode == "image-to-video":
            start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
            conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
            if middle_image_filepath and middle_frame_number is not None:
                middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
                safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
                conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
            if end_image_filepath:
                end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
                last_frame_index = actual_num_frames - 1
                conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))

        call_kwargs = {
            "prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
            "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "pt",
            "conditioning_items": conditioning_items if conditioning_items else None, 
            "media_items": None,
            "decode_timestep": self.config["decode_timestep"], "decode_noise_scale": self.config["decode_noise_scale"],
            "stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.15,
            "is_video": True, "vae_per_channel_normalize": True,
            "mixed_precision": (self.config["precision"] == "mixed_precision"),
            "offload_to_cpu": False, "enhance_prompt": False,
            "skip_layer_strategy": SkipLayerStrategy.AttentionValues
        }

        if mode == "video-to-video":
            call_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=height, width=width, max_frames=int(frames_to_use), padding=padding_values).to(self.device)

        result_tensor = None
        if improve_texture:
            if not self.latent_upsampler:
                raise ValueError("Upscaler espacial não carregado.")
            multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
            first_pass_args = self.config.get("first_pass", {}).copy()
            first_pass_args["guidance_scale"] = float(guidance_scale)
            second_pass_args = self.config.get("second_pass", {}).copy()
            second_pass_args["guidance_scale"] = float(guidance_scale)
            multi_scale_call_kwargs = call_kwargs.copy()
            multi_scale_call_kwargs.update({"downscale_factor": self.config["downscale_factor"], "first_pass": first_pass_args, "second_pass": second_pass_args})
            result_tensor = multi_scale_pipeline(**multi_scale_call_kwargs).images
            log_tensor_info(result_tensor, "Resultado da Etapa 2 (Saída do Pipeline Multi-Scale)")
        else:
            single_pass_kwargs = call_kwargs.copy()
            first_pass_config = self.config.get("first_pass", {})
            single_pass_kwargs.update({
                "guidance_scale": float(guidance_scale),
                "stg_scale": first_pass_config.get("stg_scale"),
                "rescaling_scale": first_pass_config.get("rescaling_scale"),
                "skip_block_list": first_pass_config.get("skip_block_list"),
            })

            # --- <INÍCIO DA CORREÇÃO> ---
            if mode == "video-to-video":
                single_pass_kwargs["timesteps"] = [0.7] # CORRIGIDO: Passar como uma lista
                print("[INFO] Modo video-to-video (etapa única): definindo timesteps (força) para [0.7]")
            else:
                single_pass_kwargs["timesteps"] = first_pass_config.get("timesteps")
            # --- <FIM DA CORREÇÃO> ---
            
            print("\n[INFO] Executando pipeline de etapa única...")
            result_tensor = self.pipeline(**single_pass_kwargs).images
        
        pad_left, pad_right, pad_top, pad_bottom = padding_values
        slice_h_end = -pad_bottom if pad_bottom > 0 else None
        slice_w_end = -pad_right if pad_right > 0 else None
        
        result_tensor = result_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
        log_tensor_info(result_tensor, "Tensor Final (Após Pós-processamento, Antes de Salvar)")

        video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
        temp_dir = tempfile.mkdtemp()
        output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")

        with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], codec='libx264', quality=8) as writer:
            total_frames = len(video_np)
            for i, frame in enumerate(video_np):
                writer.append_data(frame)
                if progress_callback:
                    progress_callback(i + 1, total_frames)
        
        self._log_gpu_memory("Fim da Geração")
        return output_video_path, used_seed

print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()