File size: 19,195 Bytes
ac23084
 
1797675
ac23084
 
 
 
a6e974e
ac23084
a6e974e
ac23084
 
 
1797675
ac23084
 
 
1797675
ac23084
 
1797675
ac23084
 
 
 
 
 
 
 
 
 
 
 
eb62b92
ac23084
 
 
 
 
1797675
ac23084
 
 
 
 
 
 
1797675
ac23084
 
 
 
 
1797675
ac23084
 
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d7902
 
1797675
ac23084
 
1797675
ac23084
1797675
 
31d7902
 
 
1797675
 
 
 
 
 
 
 
 
a6e974e
31d7902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e974e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797675
a6e974e
 
 
 
 
1797675
a6e974e
1797675
a6e974e
 
 
 
 
 
 
 
 
1797675
 
a6e974e
1797675
a6e974e
 
1797675
 
a6e974e
ac23084
 
 
 
 
1797675
 
 
ac23084
eb62b92
1797675
eb62b92
1797675
 
 
 
 
8ce4529
1797675
 
 
 
 
 
 
 
 
 
 
 
8ce4529
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac23084
1797675
 
 
ac23084
1797675
ac23084
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce4529
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d7902
 
1797675
ac23084
1797675
ac23084
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# video_service.py

# --- 1. IMPORTAÇÕES ---
import torch
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess

# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---

def run_setup():
    """Executa o script setup.py para clonar as dependências necessárias."""
    setup_script_path = "setup.py"
    if not os.path.exists(setup_script_path):
        print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.")
        return
    try:
        print("--- Executando setup.py para garantir que as dependências estão presentes ---")
        subprocess.run([sys.executable, setup_script_path], check=True)
        print("--- Setup concluído com sucesso ---")
    except subprocess.CalledProcessError as e:
        print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.")
        sys.exit(1)

DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
    run_setup()

def add_deps_to_path():
    """Adiciona o repositório clonado ao sys.path para que suas bibliotecas possam ser importadas."""
    if not LTX_VIDEO_REPO_DIR.exists():
        raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.")
    if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))

add_deps_to_path()

# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
from inference import (
    create_ltx_video_pipeline, create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop, seed_everething,
    calculate_padding, load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

# --- 4. FUNÇÕES HELPER DE LOG ---
def log_tensor_info(tensor, name="Tensor"):
    if not isinstance(tensor, torch.Tensor):
        print(f"\n[INFO] O item '{name}' não é um tensor para logar.")
        return
    print(f"\n--- Informações do Tensor: {name} ---")
    print(f"  - Shape: {tensor.shape}")
    print(f"  - Dtype: {tensor.dtype}")
    print(f"  - Device: {tensor.device}")
    if tensor.numel() > 0:
        print(f"  - Min valor: {tensor.min().item():.4f}")
        print(f"  - Max valor: {tensor.max().item():.4f}")
        print(f"  - Média: {tensor.mean().item():.4f}")
    else:
        print("  - O tensor está vazio, sem estatísticas.")
    print("------------------------------------------\n")



# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
class VideoService:
    def __init__(self):
        print("Inicializando VideoService...")
        self.config = self._load_config()
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.last_memory_reserved_mb = 0
        self._tmp_dirs = set()
        self._tmp_files = set()
        self._last_outputs = []
        self.pipeline, self.latent_upsampler = self._load_models()
        print(f"Movendo modelos para o dispositivo de inferência: {self.device}")
        self.pipeline.to(self.device)
        if self.latent_upsampler:
            self.latent_upsampler.to(self.device)
        if self.device == "cuda":
            torch.cuda.empty_cache()
            self._log_gpu_memory("Após carregar modelos")
        print("VideoService pronto para uso.")
    
    def _register_tmp_dir(self, d: str):
        if d and os.path.isdir(d):
            self._tmp_dirs.add(d)

    def _register_tmp_file(self, f: str):
        if f and os.path.isfile(f):
            self._tmp_files.add(f)

    def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
        """
        Remove temporários e coleta memória. 
        keep_paths: caminhos que não devem ser removidos (ex.: vídeo final).
        extra_paths: caminhos adicionais para tentar remover (opcional).
        """
        keep = set(keep_paths or [])
        extras = set(extra_paths or [])

        # Remoção de arquivos
        for f in list(self._tmp_files | extras):
            try:
                if f not in keep and os.path.isfile(f):
                    os.remove(f)
            except Exception:
                pass
            finally:
                self._tmp_files.discard(f)

        # Remoção de diretórios
        for d in list(self._tmp_dirs):
            try:
                if d not in keep and os.path.isdir(d):
                    shutil.rmtree(d, ignore_errors=True)
            except Exception:
                pass
            finally:
                self._tmp_dirs.discard(d)

        # Coleta de GC e limpeza de VRAM
        gc.collect()
        try:
            import torch
            if clear_gpu and torch.cuda.is_available():
                torch.cuda.empty_cache()
                # Limpa buffers de IPC quando aplicável
                try:
                    torch.cuda.ipc_collect()
                except Exception:
                    pass
        except Exception:
            pass

        # Log opcional pós-limpeza
        try:
            self._log_gpu_memory("Após finalize")
        except Exception:
            pass
    
    def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
        try:
            import psutil
            import pynvml as nvml
            nvml.nvmlInit()
            handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
            # Try v3, then fall back to the generic name if binding differs
            try:
                procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
            except Exception:
                procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
            results = []
            for p in procs:
                pid = int(p.pid)
                used_mb = None
                try:
                    # NVML returns bytes; some bindings may use NVML_VALUE_NOT_AVAILABLE
                    if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
                        used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
                except Exception:
                    used_mb = None
                name = "unknown"
                user = "unknown"
                try:
                    pr = psutil.Process(pid)
                    name = pr.name()
                    user = pr.username()
                except Exception:
                    pass
                results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
            nvml.nvmlShutdown()
            return results
        except Exception:
            return []
    
    def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
        # CSV, no header, no units gives lines: "PID,process_name,used_memory"
        cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
        try:
            out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
        except Exception:
            return []
        results = []
        for line in out.strip().splitlines():
            parts = [p.strip() for p in line.split(",")]
            if len(parts) >= 3:
                try:
                    pid = int(parts[0])
                    name = parts[1]
                    used_mb = int(parts[2])
                    user = "unknown"
                    try:
                        import psutil
                        pr = psutil.Process(pid)
                        user = pr.username()
                    except Exception:
                        pass
                    results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
                except Exception:
                    continue
        return results
    
    def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
        if not processes:
            return "  - Processos ativos: (nenhum)\n"
        # sort by used_mb desc, then pid
        processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
        lines = ["  - Processos ativos (PID | USER | NAME | VRAM MB):"]
        for p in processes:
            star = "*" if p["pid"] == current_pid else " "
            used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
            lines.append(f"    {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
        return "\n".join(lines) + "\n"
    
    # Integração no método existente:
    def _log_gpu_memory(self, stage_name: str):
        import torch
        if self.device != "cuda":
            return
        device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
        current_reserved_b = torch.cuda.memory_reserved(device_index)
        current_reserved_mb = current_reserved_b / (1024 ** 2)
        total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
        total_memory_mb = total_memory_b / (1024 ** 2)
        peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
        delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
    
        # Coleta de processos: tenta NVML, depois fallback para nvidia-smi
        processes = _query_gpu_processes_via_nvml(device_index)
        if not processes:
            processes = _query_gpu_processes_via_nvidiasmi(device_index)
    
        print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} (cuda:{device_index}) ---")
        print(f"  - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB")
        print(f"  - Variação desde o último log: {delta_mb:+.2f} MB")
        if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
            print(f"  - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB")
        # Imprime tabela de processos
        print(_gpu_process_table(processes, os.getpid()), end="")
        print("--------------------------------------------------\n")
        self.last_memory_reserved_mb = current_reserved_mb
    
    def _load_config(self):
        config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
        with open(config_file_path, "r") as file:
            return yaml.safe_load(file)

    def _load_models(self):
        models_dir = "downloaded_models_gradio"
        Path(models_dir).mkdir(parents=True, exist_ok=True)
        LTX_REPO = "Lightricks/LTX-Video"
        distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=models_dir, cache_dir=os.getenv("HF_HOME_CACHE"), token=os.getenv("HF_TOKEN"))
        self.config["checkpoint_path"] = distilled_model_path
        spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], local_dir=models_dir, cache_dir=os.getenv("HF_HOME_CACHE"), token=os.getenv("HF_TOKEN"))
        self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
        pipeline = create_ltx_video_pipeline(ckpt_path=self.config["checkpoint_path"], precision=self.config["precision"], text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], sampler=self.config["sampler"], device="cpu", enhance_prompt=False, prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"])
        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
        return pipeline, latent_upsampler
        
    def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
        tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
        tensor = torch.nn.functional.pad(tensor, padding_values)
        return tensor.to(self.device)

    def generate(self, prompt, negative_prompt, mode="text-to-video",
                 start_image_filepath=None,
                 middle_image_filepath=None, middle_frame_number=None, middle_image_weight=1.0,
                 end_image_filepath=None, end_image_weight=1.0,
                 input_video_filepath=None, height=512, width=704, duration=2.0,
                 frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=3.0,
                 improve_texture=True, progress_callback=None):
        if self.device == "cuda":
            torch.cuda.empty_cache()
            torch.cuda.reset_peak_memory_stats()
        self._log_gpu_memory("Início da Geração")

        if mode == "image-to-video" and not start_image_filepath:
            raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
        if mode == "video-to-video" and not input_video_filepath:
            raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")

        used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
        seed_everething(used_seed)

        FPS = 24.0
        MAX_NUM_FRAMES = 257
        target_frames_rounded = round(duration * FPS)
        n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
        actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
        
        height_padded = ((height - 1) // 32 + 1) * 32
        width_padded = ((width - 1) // 32 + 1) * 32
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        
        generator = torch.Generator(device=self.device).manual_seed(used_seed)
        
        conditioning_items = []
        if mode == "image-to-video":
            start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
            conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
            if middle_image_filepath and middle_frame_number is not None:
                middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
                safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
                conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
            if end_image_filepath:
                end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
                last_frame_index = actual_num_frames - 1
                conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))

        call_kwargs = {
            "prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
            "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "pt",
            "conditioning_items": conditioning_items if conditioning_items else None, 
            "media_items": None,
            "decode_timestep": self.config["decode_timestep"], "decode_noise_scale": self.config["decode_noise_scale"],
            "stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.15,
            "is_video": True, "vae_per_channel_normalize": True,
            "mixed_precision": (self.config["precision"] == "mixed_precision"),
            "offload_to_cpu": False, "enhance_prompt": False,
            "skip_layer_strategy": SkipLayerStrategy.AttentionValues
        }

        if mode == "video-to-video":
            call_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=height, width=width, max_frames=int(frames_to_use), padding=padding_values).to(self.device)

        result_tensor = None
        if improve_texture:
            if not self.latent_upsampler:
                raise ValueError("Upscaler espacial não carregado.")
            multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
            first_pass_args = self.config.get("first_pass", {}).copy()
            first_pass_args["guidance_scale"] = float(guidance_scale)
            second_pass_args = self.config.get("second_pass", {}).copy()
            second_pass_args["guidance_scale"] = float(guidance_scale)
            multi_scale_call_kwargs = call_kwargs.copy()
            multi_scale_call_kwargs.update({"downscale_factor": self.config["downscale_factor"], "first_pass": first_pass_args, "second_pass": second_pass_args})
            result_tensor = multi_scale_pipeline(**multi_scale_call_kwargs).images
            log_tensor_info(result_tensor, "Resultado da Etapa 2 (Saída do Pipeline Multi-Scale)")
        else:
            single_pass_kwargs = call_kwargs.copy()
            first_pass_config = self.config.get("first_pass", {})
            single_pass_kwargs.update({
                "guidance_scale": float(guidance_scale),
                "stg_scale": first_pass_config.get("stg_scale"),
                "rescaling_scale": first_pass_config.get("rescaling_scale"),
                "skip_block_list": first_pass_config.get("skip_block_list"),
            })

            # --- <INÍCIO DA CORREÇÃO> ---
            if mode == "video-to-video":
                single_pass_kwargs["timesteps"] = [0.7] # CORRIGIDO: Passar como uma lista
                print("[INFO] Modo video-to-video (etapa única): definindo timesteps (força) para [0.7]")
            else:
                single_pass_kwargs["timesteps"] = first_pass_config.get("timesteps")
            # --- <FIM DA CORREÇÃO> ---
            
            print("\n[INFO] Executando pipeline de etapa única...")
            result_tensor = self.pipeline(**single_pass_kwargs).images
        
        pad_left, pad_right, pad_top, pad_bottom = padding_values
        slice_h_end = -pad_bottom if pad_bottom > 0 else None
        slice_w_end = -pad_right if pad_right > 0 else None
        
        result_tensor = result_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
        log_tensor_info(result_tensor, "Tensor Final (Após Pós-processamento, Antes de Salvar)")

        video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
        temp_dir = tempfile.mkdtemp()
        output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")

        with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], codec='libx264', quality=8) as writer:
            total_frames = len(video_np)
            for i, frame in enumerate(video_np):
                writer.append_data(frame)
                if progress_callback:
                    progress_callback(i + 1, total_frames)
        
        self._log_gpu_memory("Fim da Geração")

        finalize()
        return output_video_path, used_seed

print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()