File size: 12,406 Bytes
52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 94cdf7d 52d1c8b a5720bf 52d1c8b 94cdf7d 52d1c8b 94cdf7d 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b a5720bf 52d1c8b b174530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# api/seedvr_server.py
import os
import sys
import time
import subprocess
import queue
import multiprocessing as mp
from pathlib import Path
from typing import Optional, Callable
from huggingface_hub import hf_hub_download
# -------------------------------------------------------------
# 1. CONFIGURAÇÃO DE AMBIENTE E CUDA
# -------------------------------------------------------------
# Garante o uso seguro de CUDA com multiprocessing para estabilidade.
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn', force=True)
# Configuração de alocação de memória da VRAM
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "backend:cudaMallocAsync")
# Adiciona dinamicamente o caminho do repositório clonado ao sys.path.
SEEDVR_REPO_PATH = Path(os.getenv("SEEDVR_ROOT", "/data/SeedVR"))
if str(SEEDVR_REPO_PATH) not in sys.path:
sys.path.insert(0, str(SEEDVR_REPO_PATH))
# Importações pesadas (torch, etc.) são feitas após a configuração do ambiente.
import torch
import cv2
import numpy as np
from datetime import datetime
# -------------------------------------------------------------
# 2. FUNÇÕES AUXILIARES DE PROCESSAMENTO (Workers e I/O)
# -------------------------------------------------------------
def extract_frames_from_video(video_path, debug=False, skip_first_frames=0, load_cap=None):
"""Extrai quadros de um vídeo e os converte para o formato de tensor."""
if debug: print(f"🎬 Extraindo frames de: {video_path}")
if not os.path.exists(video_path): raise FileNotFoundError(f"Arquivo de vídeo não encontrado: {video_path}")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): raise ValueError(f"Não foi possível abrir o arquivo de vídeo: {video_path}")
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if debug: print(f"📊 Info do vídeo: {frame_count} frames, {fps:.2f} FPS")
frames = []
frames_loaded = 0
for i in range(frame_count):
ret, frame = cap.read()
if not ret: break
if i < skip_first_frames: continue
if load_cap and frames_loaded >= load_cap: break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame.astype(np.float32) / 255.0)
frames_loaded += 1
cap.release()
if not frames: raise ValueError(f"Nenhum frame foi extraído do vídeo: {video_path}")
if debug: print(f"✅ {len(frames)} frames extraídos com sucesso.")
return torch.from_numpy(np.stack(frames)).to(torch.float16), fps
def save_frames_to_video(frames_tensor, output_path, fps=30.0, debug=False):
"""Salva um tensor de quadros em um arquivo de vídeo."""
if debug: print(f"🎬 Salvando {frames_tensor.shape[0]} frames em: {output_path}")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
frames_np = (frames_tensor.cpu().numpy() * 255.0).astype(np.uint8)
T, H, W, _ = frames_np.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (W, H))
if not out.isOpened(): raise ValueError(f"Não foi possível criar o arquivo de vídeo: {output_path}")
for frame in frames_np:
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
out.release()
if debug: print(f"✅ Vídeo salvo com sucesso: {output_path}")
def _worker_process(proc_idx, device_id, frames_np, shared_args, return_queue, progress_queue=None):
"""Processo filho (worker) que executa o upscaling em uma GPU dedicada."""
os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id)
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "backend:cudaMallocAsync")
import torch
from src.core.model_manager import configure_runner
from src.core.generation import generation_loop
try:
frames_tensor = torch.from_numpy(frames_np).to(torch.float16)
callback = (lambda b, t, _, m: progress_queue.put((proc_idx, b, t, m))) if progress_queue else None
runner = configure_runner(shared_args["model"], shared_args["model_dir"], shared_args["preserve_vram"], shared_args["debug"])
result_tensor = generation_loop(
runner=runner, images=frames_tensor, cfg_scale=1.0, seed=shared_args["seed"],
res_w=shared_args["resolution"], batch_size=shared_args["batch_size"],
preserve_vram=shared_args["preserve_vram"], temporal_overlap=0,
debug=shared_args["debug"], progress_callback=callback
)
return_queue.put((proc_idx, result_tensor.cpu().numpy()))
except Exception as e:
import traceback
error_msg = f"ERRO no worker {proc_idx}: {e}\n{traceback.format_exc()}"
print(error_msg)
if progress_queue: progress_queue.put((proc_idx, -1, -1, error_msg))
return_queue.put((proc_idx, error_msg))
# -------------------------------------------------------------
# 3. CLASSE DO SERVIDOR PRINCIPAL
# -------------------------------------------------------------
class SeedVRServer:
def __init__(self, **kwargs):
"""Inicializa o servidor, define os caminhos e prepara o ambiente."""
print("⚙️ SeedVRServer inicializando...")
self.SEEDVR_ROOT = SEEDVR_REPO_PATH
self.CKPTS_ROOT = Path("/data/seedvr_models_fp16")
self.OUTPUT_ROOT = Path(os.getenv("OUTPUT_ROOT", "/app/outputs"))
self.INPUT_ROOT = Path(os.getenv("INPUT_ROOT", "/app/inputs"))
self.HF_HOME_CACHE = Path(os.getenv("HF_HOME", "/data/.cache/huggingface"))
self.REPO_URL = os.getenv("SEEDVR_GIT_URL", "https://github.com/numz/ComfyUI-SeedVR2_VideoUpscaler")
self.NUM_GPUS_TOTAL = torch.cuda.device_count()
for p in [self.CKPTS_ROOT, self.OUTPUT_ROOT, self.INPUT_ROOT, self.HF_HOME_CACHE]:
p.mkdir(parents=True, exist_ok=True)
self.setup_dependencies()
print("📦 SeedVRServer pronto.")
def setup_dependencies(self):
"""Garante que o repositório e os modelos estão presentes."""
# Clona o repositório do SeedVR se não existir
if not (self.SEEDVR_ROOT / ".git").exists():
print(f"[SeedVRServer] Clonando repositório para {self.SEEDVR_ROOT}...")
subprocess.run(["git", "clone", "--depth", "1", self.REPO_URL, str(self.SEEDVR_ROOT)], check=True)
else:
print("[SeedVRServer] Repositório SeedVR já existe.")
# Baixa os checkpoints do Hugging Face se não existirem
print(f"[SeedVRServer] Verificando checkpoints em {self.CKPTS_ROOT}...")
model_files = {
"seedvr2_ema_7b_sharp_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
"ema_vae_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses"
}
for filename, repo_id in model_files.items():
if not (self.CKPTS_ROOT / filename).exists():
print(f"Baixando {filename}...")
from huggingface_hub import hf_hub_download
hf_hub_download(
repo_id=repo_id, filename=filename, local_dir=str(self.CKPTS_ROOT),
cache_dir=str(self.HF_HOME_CACHE), token=os.getenv("HF_TOKEN")
)
print("[SeedVRServer] Checkpoints estão no local correto.")
def run_inference(
self,
file_path: str, *,
seed: int,
resolution: int,
batch_size: int,
model: str = "seedvr2_ema_7b_sharp_fp16.safetensors",
fps: Optional[float] = None,
debug: bool = True,
preserve_vram: bool = True,
progress: Optional[Callable] = None
) -> str:
"""
Executa o pipeline completo de upscaling de vídeo e retorna o caminho do arquivo de saída.
"""
if progress: progress(0.01, "⌛ Inicializando...")
# --- 1. Extração de Frames ---
if progress: progress(0.05, "🎬 Extraindo frames do vídeo...")
frames_tensor, original_fps = extract_frames_from_video(file_path, debug)
# --- 2. Preparação do Processamento Multi-GPU ---
device_list = list(range(self.NUM_GPUS_TOTAL))
num_devices = len(device_list)
chunks = torch.chunk(frames_tensor, num_devices, dim=0)
manager = mp.Manager()
return_queue = manager.Queue()
progress_queue = manager.Queue() if progress else None
shared_args = {
"model": model, "model_dir": str(self.CKPTS_ROOT), "preserve_vram": preserve_vram,
"debug": debug, "seed": seed, "resolution": resolution, "batch_size": batch_size
}
# --- 3. Inicia os Workers ---
if progress: progress(0.1, f"🚀 Iniciando geração em {num_devices} GPUs...")
workers = []
for idx, device_id in enumerate(device_list):
p = mp.Process(target=_worker_process, args=(idx, device_id, chunks[idx].cpu().numpy(), shared_args, return_queue, progress_queue))
p.start()
workers.append(p)
# --- 4. Coleta de Resultados e Monitoramento de Progresso ---
results_np = [None] * num_devices
finished_workers = 0
worker_progress = [0.0] * num_devices
while finished_workers < num_devices:
# Atualiza a barra de progresso com informações da fila
if progress_queue:
while not progress_queue.empty():
try:
p_idx, b_idx, b_total, msg = progress_queue.get_nowait()
if b_idx == -1: raise RuntimeError(f"Erro no Worker {p_idx}: {msg}")
if b_total > 0: worker_progress[p_idx] = b_idx / b_total
total_progress = sum(worker_progress) / num_devices
progress(0.1 + total_progress * 0.85, desc=f"GPU {p_idx+1}/{num_devices}: {msg}")
except queue.Empty: pass
# Verifica se algum worker terminou
try:
proc_idx, result = return_queue.get(timeout=0.2)
if isinstance(result, str): raise RuntimeError(f"Worker {proc_idx} falhou: {result}")
results_np[proc_idx] = result
worker_progress[proc_idx] = 1.0
finished_workers += 1
except queue.Empty: pass
for p in workers: p.join()
if any(r is None for r in results_np):
raise RuntimeError("Um ou mais workers falharam ao retornar um resultado.")
# --- 5. Combina os resultados e salva o vídeo final ---
result_tensor = torch.from_numpy(np.concatenate(results_np, axis=0)).to(torch.float16)
if progress: progress(0.95, "💾 Salvando o vídeo final...")
out_dir = self.OUTPUT_ROOT / f"run_{int(time.time())}_{Path(file_path).stem}"
out_dir.mkdir(parents=True, exist_ok=True)
output_filepath = out_dir / f"result_{Path(file_path).stem}.mp4"
final_fps = fps if fps and fps > 0 else original_fps
save_frames_to_video(result_tensor, str(output_filepath), final_fps, debug)
print(f"✅ Vídeo salvo com sucesso em: {output_filepath}")
return str(output_filepath)
# -------------------------------------------------------------
# 4. PONTO DE ENTRADA PARA EXECUÇÃO
# -------------------------------------------------------------
if __name__ == "__main__":
# Bloco para testes ou inicialização autônoma.
print("🚀 Executando o servidor SeedVR em modo autônomo...")
try:
server = SeedVRServer()
print("✅ Servidor inicializado com sucesso. Pronto para receber chamadas.")
# Exemplo de como chamar a inferência (requer um arquivo de vídeo):
# input_video = "caminho/para/seu/video.mp4"
# if os.path.exists(input_video):
# server.run_inference(
# file_path=input_video,
# seed=42,
# resolution=1072,
# batch_size=4,
# progress=lambda p, desc: print(f"Progresso: {p*100:.1f}% - {desc}")
# )
# else:
# print(f"Vídeo de teste não encontrado em '{input_video}'. Pulei a execução da inferência.")
except Exception as e:
print(f"❌ Falha ao inicializar o servidor: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
|