File size: 18,062 Bytes
2701e1f d7c623e 2701e1f fd4abdb 2701e1f d7c623e 2701e1f d7c623e 2701e1f fd4abdb d7c623e 2701e1f 953982d 2701e1f ab2fc5d 21e9173 2701e1f ab2fc5d 2701e1f ab2fc5d 2701e1f ab2fc5d 2701e1f ab2fc5d 2701e1f ab2fc5d 2701e1f ab2fc5d 2701e1f d7c623e ab2fc5d 2701e1f ab2fc5d 2701e1f ab2fc5d 2701e1f ab2fc5d d7c623e f736eae 2701e1f f736eae d7c623e f736eae 2701e1f f736eae 2701e1f fd4abdb 2701e1f fd4abdb 2701e1f fd4abdb 2701e1f fd4abdb 2701e1f fd4abdb 2701e1f fd4abdb 2701e1f fd4abdb 2701e1f fd4abdb 2701e1f fd4abdb 2701e1f 36ce571 2701e1f d7c623e 2701e1f d7c623e 36ce571 2701e1f d7c623e 2701e1f d7c623e 2701e1f 36ce571 2701e1f 36ce571 2701e1f 5a3bb22 36ce571 5a3bb22 36ce571 5a3bb22 36ce571 5a3bb22 36ce571 5a3bb22 50604bb 5a3bb22 50604bb d6d47ed 6cb8e24 2701e1f 5a3bb22 2701e1f d7c623e 2701e1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# ltx_server_refactored.py — VideoService (Modular Version with Simple Overlap Chunking)
# --- 0. WARNINGS E AMBIENTE ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()
LTXV_DEBUG=1
LTXV_FRAME_LOG_EVERY=8
import os, subprocess, shlex, tempfile
import torch
import json
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
from PIL import Image
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback
from einops import rearrange
import torch.nn.functional as F
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
# (Todas as funções de setup, helpers e inicialização da classe permanecem inalteradas)
# ... (run_setup, add_deps_to_path, _query_gpu_processes_via_nvml, etc.)
def run_setup():
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
return
try:
print("[DEBUG] Executando setup.py para dependências...")
subprocess.run([sys.executable, setup_script_path], check=True)
print("[DEBUG] Setup concluído com sucesso.")
except subprocess.CalledProcessError as e:
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
sys.exit(1)
if not LTX_VIDEO_REPO_DIR.exists():
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
run_setup()
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, repo_path)
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
def calculate_padding(orig_h, orig_w, target_h, target_w):
pad_h = target_h - orig_h
pad_w = target_w - orig_w
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
pad_left = pad_w // 2
pad_right = pad_w - pad_left
return (pad_left, pad_right, pad_top, pad_bottom)
def log_tensor_info(tensor, name="Tensor"):
if not isinstance(tensor, torch.Tensor):
print(f"\n[INFO] '{name}' não é tensor.")
return
print(f"\n--- Tensor: {name} ---")
print(f" - Shape: {tuple(tensor.shape)}")
print(f" - Dtype: {tensor.dtype}")
print(f" - Device: {tensor.device}")
if tensor.numel() > 0:
try:
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}")
except Exception:
pass
print("------------------------------------------\n")
add_deps_to_path()
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
from api.ltx.inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
)
class VideoService:
def __init__(self):
t0 = time.perf_counter()
print("[DEBUG] Inicializando VideoService...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.config = self._load_config()
self.pipeline, self.latent_upsampler = self._load_models()
self.pipeline.to(self.device)
if self.latent_upsampler:
self.latent_upsampler.to(self.device)
self._apply_precision_policy()
vae_manager_singleton.attach_pipeline(
self.pipeline,
device=self.device,
autocast_dtype=self.runtime_autocast_dtype
)
self._tmp_dirs = set()
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
def _load_config(self):
base = LTX_VIDEO_REPO_DIR / "configs"
config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
with open(config_path, "r") as file:
return yaml.safe_load(file)
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
print("[DEBUG] Finalize: iniciando limpeza...")
keep = set(keep_paths or []); extras = set(extra_paths or [])
gc.collect()
try:
if clear_gpu and torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception as e:
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
try:
self._log_gpu_memory("Após finalize")
except Exception as e:
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
def _load_models(self):
t0 = time.perf_counter()
LTX_REPO = "Lightricks/LTX-Video"
print("[DEBUG] Baixando checkpoint principal...")
distilled_model_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["checkpoint_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["checkpoint_path"] = distilled_model_path
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
print("[DEBUG] Baixando upscaler espacial...")
spatial_upscaler_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["spatial_upscaler_model_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN")
)
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
print("[DEBUG] Construindo pipeline...")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.config["checkpoint_path"],
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
print("[DEBUG] Pipeline pronto.")
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
print("[DEBUG] Construindo latent_upsampler...")
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
print("[DEBUG] Upsampler pronto.")
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
return pipeline, latent_upsampler
def _apply_precision_policy(self):
prec = str(self.config.get("precision", "")).lower()
self.runtime_autocast_dtype = torch.float32
if prec in ["float8_e4m3fn", "bfloat16"]:
self.runtime_autocast_dtype = torch.bfloat16
elif prec == "mixed_precision":
self.runtime_autocast_dtype = torch.float16
def _register_tmp_dir(self, d: str):
if d and os.path.isdir(d):
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
@torch.no_grad()
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
try:
if not self.latent_upsampler:
raise ValueError("Latent Upsampler não está carregado.")
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
upsampled_latents = self.latent_upsampler(latents_unnormalized)
return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
except Exception as e:
pass
finally:
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
self.finalize(keep_paths=[])
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
tensor = torch.nn.functional.pad(tensor, padding_values)
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4")
video_encode_tool_singleton.save_video_from_tensor(
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
)
final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4")
shutil.move(output_path, final_path)
print(f"[DEBUG] Vídeo salvo em: {final_path}")
return final_path
# ==============================================================================
# --- FUNÇÕES MODULARES COM A LÓGICA DE CHUNKING SIMPLIFICADA ---
# ==============================================================================
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int):
if not items_list: return []
height_padded = ((height - 1) // 8 + 1) * 8
width_padded = ((width - 1) // 8 + 1) * 8
padding_values = calculate_padding(height, width, height_padded, width_padded)
conditioning_items = []
for media, frame, weight in items_list:
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values) if isinstance(media, str) else media.to(self.device, dtype=self.runtime_autocast_dtype)
safe_frame = max(0, min(int(frame), num_frames - 1))
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
return conditioning_items
def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None):
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
seed_everething(used_seed)
FPS = 24.0
actual_num_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
height_padded = ((height - 1) // 8 + 1) * 8
width_padded = ((width - 1) // 8 + 1) * 8
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir)
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
x_width = int(width_padded * downscale_factor)
downscaled_width = x_width - (x_width % vae_scale_factor)
x_height = int(height_padded * downscale_factor)
downscaled_height = x_height - (x_height % vae_scale_factor)
first_pass_kwargs = {
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
"num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": torch.Generator(device=self.device).manual_seed(used_seed),
"output_type": "latent", "conditioning_items": conditioning_items, "guidance_scale": float(guidance_scale),
**(self.config.get("first_pass", {}))
}
try:
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
latents = self.pipeline(**first_pass_kwargs).images
pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
video_path = self._save_and_log_video(pixel_tensor, "low_res_video", FPS, temp_dir, results_dir, used_seed)
latents_cpu = latents.detach().to("cpu")
tensor_path = os.path.join(results_dir, f"latents_low_res_{used_seed}.pt")
torch.save(latents_cpu, tensor_path)
return video_path, tensor_path, used_seed
except Exception as e:
pass
finally:
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
self.finalize(keep_paths=[])
def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
seed_everething(used_seed)
temp_dir = tempfile.mkdtemp(prefix="ltxv_up_"); self._register_tmp_dir(temp_dir)
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
latents_low = torch.load(latents_path).to(self.device)
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
upsampled_latents = self._upsample_latents_internal(latents_low)
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents_low)
del latents_low; torch.cuda.empty_cache()
# --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
total_frames = upsampled_latents.shape[2]
# Garante que mid_point seja pelo menos 1 para evitar um segundo chunk vazio se houver poucos frames
mid_point = max(1, total_frames // 2)
chunk1 = upsampled_latents[:, :, :mid_point, :, :]
# O segundo chunk começa um frame antes para criar o overlap
chunk2 = upsampled_latents[:, :, mid_point - 1:, :, :]
final_latents_list = []
for i, chunk in enumerate([chunk1, chunk2]):
if chunk.shape[2] <= 1: continue # Pula chunks inválidos ou vazios
second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor
second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor
second_pass_kwargs = {
"prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height, "width": second_pass_width,
"num_frames": chunk.shape[2], "latents": chunk, "guidance_scale": float(guidance_scale),
"output_type": "latent", "generator": torch.Generator(device=self.device).manual_seed(used_seed),
**(self.config.get("second_pass", {}))
}
refined_chunk = self.pipeline(**second_pass_kwargs).images
# Remove o overlap do primeiro chunk refinado antes de juntar
if i == 0:
final_latents_list.append(refined_chunk[:, :, :-1, :, :])
else:
final_latents_list.append(refined_chunk)
final_latents = torch.cat(final_latents_list, dim=2)
log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais")
latents_cpu = final_latents.detach().to("cpu")
tensor_path = os.path.join(results_dir, f"latents_refined_{used_seed}.pt")
torch.save(latents_cpu, tensor_path)
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed)
return video_path, tensor_path
def encode_mp4(self, latents_path: str, fps: int = 24):
latents = torch.load(latents_path)
seed = random.randint(0, 99999)
temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_"); self._register_tmp_dir(temp_dir)
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
# --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
total_frames = latents.shape[2]
mid_point = max(1, total_frames // 2)
chunk1_latents = latents[:, :, :mid_point, :, :]
chunk2_latents = latents[:, :, mid_point - 1:, :, :]
video_parts = []
pixel_chunks_to_concat = []
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
for i, chunk in enumerate([chunk1_latents, chunk2_latents]):
if chunk.shape[2] == 0: continue
pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
# Remove o overlap do primeiro chunk de pixels
if i == 0:
pixel_chunks_to_concat.append(pixel_chunk[:, :, :-1, :, :])
else:
pixel_chunks_to_concat.append(pixel_chunk)
final_pixel_tensor = torch.cat(pixel_chunks_to_concat, dim=2)
final_video_path = self._save_and_log_video(final_pixel_tensor, f"final_concatenated_{seed}", fps, temp_dir, results_dir, seed)
return final_video_path
# --- INSTANCIAÇÃO DO SERVIÇO ---
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()
print("Instância do VideoService pronta para uso.") |