|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import numpy as np |
|
|
import random |
|
|
import os |
|
|
import yaml |
|
|
from pathlib import Path |
|
|
import imageio |
|
|
import tempfile |
|
|
from huggingface_hub import hf_hub_download |
|
|
import sys |
|
|
import subprocess |
|
|
|
|
|
|
|
|
|
|
|
def run_setup(): |
|
|
"""Executa o script setup.py para clonar as dependências necessárias.""" |
|
|
setup_script_path = "setup.py" |
|
|
if not os.path.exists(setup_script_path): |
|
|
print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.") |
|
|
return |
|
|
try: |
|
|
print("--- Executando setup.py para garantir que as dependências estão presentes ---") |
|
|
subprocess.run([sys.executable, setup_script_path], check=True) |
|
|
print("--- Setup concluído com sucesso ---") |
|
|
except subprocess.CalledProcessError as e: |
|
|
print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.") |
|
|
sys.exit(1) |
|
|
|
|
|
DEPS_DIR = Path("./deps") |
|
|
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" |
|
|
if not LTX_VIDEO_REPO_DIR.exists(): |
|
|
run_setup() |
|
|
|
|
|
def add_deps_to_path(): |
|
|
"""Adiciona o repositório clonado ao sys.path para que suas bibliotecas possam ser importadas.""" |
|
|
if not LTX_VIDEO_REPO_DIR.exists(): |
|
|
raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.") |
|
|
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path: |
|
|
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve())) |
|
|
|
|
|
add_deps_to_path() |
|
|
|
|
|
|
|
|
from inference import ( |
|
|
create_ltx_video_pipeline, create_latent_upsampler, |
|
|
load_image_to_tensor_with_resize_and_crop, seed_everething, |
|
|
calculate_padding, load_media_file |
|
|
) |
|
|
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline |
|
|
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy |
|
|
|
|
|
|
|
|
def log_tensor_info(tensor, name="Tensor"): |
|
|
if not isinstance(tensor, torch.Tensor): |
|
|
print(f"\n[INFO] O item '{name}' não é um tensor para logar.") |
|
|
return |
|
|
print(f"\n--- Informações do Tensor: {name} ---") |
|
|
print(f" - Shape: {tensor.shape}") |
|
|
print(f" - Dtype: {tensor.dtype}") |
|
|
print(f" - Device: {tensor.device}") |
|
|
if tensor.numel() > 0: |
|
|
print(f" - Min valor: {tensor.min().item():.4f}") |
|
|
print(f" - Max valor: {tensor.max().item():.4f}") |
|
|
print(f" - Média: {tensor.mean().item():.4f}") |
|
|
else: |
|
|
print(" - O tensor está vazio, sem estatísticas.") |
|
|
print("------------------------------------------\n") |
|
|
|
|
|
|
|
|
class VideoService: |
|
|
def __init__(self): |
|
|
print("Inicializando VideoService...") |
|
|
self.config = self._load_config() |
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
self.last_memory_reserved_mb = 0 |
|
|
self.pipeline, self.latent_upsampler = self._load_models() |
|
|
print(f"Movendo modelos para o dispositivo de inferência: {self.device}") |
|
|
self.pipeline.to(self.device) |
|
|
if self.latent_upsampler: |
|
|
self.latent_upsampler.to(self.device) |
|
|
if self.device == "cuda": |
|
|
torch.cuda.empty_cache() |
|
|
self._log_gpu_memory("Após carregar modelos") |
|
|
print("VideoService pronto para uso.") |
|
|
|
|
|
def _log_gpu_memory(self, stage_name: str): |
|
|
if self.device != "cuda": return |
|
|
current_reserved_b = torch.cuda.memory_reserved() |
|
|
current_reserved_mb = current_reserved_b / (1024 ** 2) |
|
|
total_memory_b = torch.cuda.get_device_properties(0).total_memory |
|
|
total_memory_mb = total_memory_b / (1024 ** 2) |
|
|
peak_reserved_mb = torch.cuda.max_memory_reserved() / (1024 ** 2) |
|
|
delta_mb = current_reserved_mb - self.last_memory_reserved_mb |
|
|
print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} ---") |
|
|
print(f" - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB") |
|
|
print(f" - Variação desde o último log: {delta_mb:+.2f} MB") |
|
|
if peak_reserved_mb > self.last_memory_reserved_mb: |
|
|
print(f" - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB") |
|
|
print("--------------------------------------------------\n") |
|
|
self.last_memory_reserved_mb = current_reserved_mb |
|
|
|
|
|
def _load_config(self): |
|
|
config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml" |
|
|
with open(config_file_path, "r") as file: |
|
|
return yaml.safe_load(file) |
|
|
|
|
|
def _load_models(self): |
|
|
models_dir = "downloaded_models_gradio" |
|
|
Path(models_dir).mkdir(parents=True, exist_ok=True) |
|
|
LTX_REPO = "Lightricks/LTX-Video" |
|
|
distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False) |
|
|
self.config["checkpoint_path"] = distilled_model_path |
|
|
spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], local_dir=models_dir, local_dir_use_symlinks=False) |
|
|
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path |
|
|
pipeline = create_ltx_video_pipeline(ckpt_path=self.config["checkpoint_path"], precision=self.config["precision"], text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], sampler=self.config["sampler"], device="cpu", enhance_prompt=False, prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"]) |
|
|
latent_upsampler = None |
|
|
if self.config.get("spatial_upscaler_model_path"): |
|
|
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") |
|
|
return pipeline, latent_upsampler |
|
|
|
|
|
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values): |
|
|
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width) |
|
|
tensor = torch.nn.functional.pad(tensor, padding_values) |
|
|
return tensor.to(self.device) |
|
|
|
|
|
def generate(self, prompt, negative_prompt, mode="text-to-video", |
|
|
start_image_filepath=None, |
|
|
middle_image_filepath=None, middle_frame_number=None, middle_image_weight=1.0, |
|
|
end_image_filepath=None, end_image_weight=1.0, |
|
|
input_video_filepath=None, height=512, width=704, duration=2.0, |
|
|
frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=3.0, |
|
|
improve_texture=True, progress_callback=None): |
|
|
if self.device == "cuda": |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
self._log_gpu_memory("Início da Geração") |
|
|
|
|
|
if mode == "image-to-video" and not start_image_filepath: |
|
|
raise ValueError("A imagem de início é obrigatória para o modo image-to-video") |
|
|
if mode == "video-to-video" and not input_video_filepath: |
|
|
raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video") |
|
|
|
|
|
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed) |
|
|
seed_everething(used_seed) |
|
|
|
|
|
FPS = 24.0 |
|
|
MAX_NUM_FRAMES = 257 |
|
|
target_frames_rounded = round(duration * FPS) |
|
|
n_val = round((float(target_frames_rounded) - 1.0) / 8.0) |
|
|
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1))) |
|
|
|
|
|
height_padded = ((height - 1) // 32 + 1) * 32 |
|
|
width_padded = ((width - 1) // 32 + 1) * 32 |
|
|
padding_values = calculate_padding(height, width, height_padded, width_padded) |
|
|
|
|
|
generator = torch.Generator(device=self.device).manual_seed(used_seed) |
|
|
|
|
|
conditioning_items = [] |
|
|
if mode == "image-to-video": |
|
|
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values) |
|
|
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0)) |
|
|
if middle_image_filepath and middle_frame_number is not None: |
|
|
middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values) |
|
|
safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1)) |
|
|
conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight))) |
|
|
if end_image_filepath: |
|
|
end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values) |
|
|
last_frame_index = actual_num_frames - 1 |
|
|
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight))) |
|
|
|
|
|
call_kwargs = { |
|
|
"prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded, |
|
|
"num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "pt", |
|
|
"conditioning_items": conditioning_items if conditioning_items else None, |
|
|
"media_items": None, |
|
|
"decode_timestep": self.config["decode_timestep"], "decode_noise_scale": self.config["decode_noise_scale"], |
|
|
"stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.15, |
|
|
"is_video": True, "vae_per_channel_normalize": True, |
|
|
"mixed_precision": (self.config["precision"] == "mixed_precision"), |
|
|
"offload_to_cpu": False, "enhance_prompt": False, |
|
|
"skip_layer_strategy": SkipLayerStrategy.AttentionValues |
|
|
} |
|
|
|
|
|
if mode == "video-to-video": |
|
|
call_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=height, width=width, max_frames=int(frames_to_use), padding=padding_values).to(self.device) |
|
|
|
|
|
result_tensor = None |
|
|
if improve_texture: |
|
|
if not self.latent_upsampler: |
|
|
raise ValueError("Upscaler espacial não carregado.") |
|
|
multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler) |
|
|
first_pass_args = self.config.get("first_pass", {}).copy() |
|
|
first_pass_args["guidance_scale"] = float(guidance_scale) |
|
|
second_pass_args = self.config.get("second_pass", {}).copy() |
|
|
second_pass_args["guidance_scale"] = float(guidance_scale) |
|
|
multi_scale_call_kwargs = call_kwargs.copy() |
|
|
multi_scale_call_kwargs.update({"downscale_factor": self.config["downscale_factor"], "first_pass": first_pass_args, "second_pass": second_pass_args}) |
|
|
result_tensor = multi_scale_pipeline(**multi_scale_call_kwargs).images |
|
|
log_tensor_info(result_tensor, "Resultado da Etapa 2 (Saída do Pipeline Multi-Scale)") |
|
|
else: |
|
|
single_pass_kwargs = call_kwargs.copy() |
|
|
first_pass_config = self.config.get("first_pass", {}) |
|
|
single_pass_kwargs.update({ |
|
|
"guidance_scale": float(guidance_scale), |
|
|
"stg_scale": first_pass_config.get("stg_scale"), |
|
|
"rescaling_scale": first_pass_config.get("rescaling_scale"), |
|
|
"skip_block_list": first_pass_config.get("skip_block_list"), |
|
|
}) |
|
|
|
|
|
|
|
|
if mode == "video-to-video": |
|
|
single_pass_kwargs["timesteps"] = [0.7] |
|
|
print("[INFO] Modo video-to-video (etapa única): definindo timesteps (força) para [0.7]") |
|
|
else: |
|
|
single_pass_kwargs["timesteps"] = first_pass_config.get("timesteps") |
|
|
|
|
|
|
|
|
print("\n[INFO] Executando pipeline de etapa única...") |
|
|
result_tensor = self.pipeline(**single_pass_kwargs).images |
|
|
|
|
|
pad_left, pad_right, pad_top, pad_bottom = padding_values |
|
|
slice_h_end = -pad_bottom if pad_bottom > 0 else None |
|
|
slice_w_end = -pad_right if pad_right > 0 else None |
|
|
|
|
|
result_tensor = result_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end] |
|
|
log_tensor_info(result_tensor, "Tensor Final (Após Pós-processamento, Antes de Salvar)") |
|
|
|
|
|
video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8) |
|
|
temp_dir = tempfile.mkdtemp() |
|
|
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4") |
|
|
|
|
|
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], codec='libx264', quality=8) as writer: |
|
|
total_frames = len(video_np) |
|
|
for i, frame in enumerate(video_np): |
|
|
writer.append_data(frame) |
|
|
if progress_callback: |
|
|
progress_callback(i + 1, total_frames) |
|
|
|
|
|
self._log_gpu_memory("Fim da Geração") |
|
|
return output_video_path, used_seed |
|
|
|
|
|
print("Criando instância do VideoService. O carregamento do modelo começará agora...") |
|
|
video_generation_service = VideoService() |