|
|
|
|
|
|
|
|
import torch |
|
|
import numpy as np |
|
|
import random |
|
|
import os |
|
|
import yaml |
|
|
from pathlib import Path |
|
|
import imageio |
|
|
import tempfile |
|
|
import sys |
|
|
import subprocess |
|
|
import threading |
|
|
import time |
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
|
|
|
|
|
|
def run_setup(): |
|
|
setup_script_path = "setup.py" |
|
|
if not os.path.exists(setup_script_path): |
|
|
print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.") |
|
|
return |
|
|
try: |
|
|
print("--- Executando setup.py para garantir que as dependências estão presentes ---") |
|
|
subprocess.run([sys.executable, setup_script_path], check=True) |
|
|
print("--- Setup concluído com sucesso ---") |
|
|
except subprocess.CalledProcessError as e: |
|
|
print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.") |
|
|
sys.exit(1) |
|
|
|
|
|
DEPS_DIR = Path("./deps") |
|
|
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" |
|
|
if not LTX_VIDEO_REPO_DIR.exists(): |
|
|
run_setup() |
|
|
|
|
|
def add_deps_to_path(): |
|
|
if not LTX_VIDEO_REPO_DIR.exists(): |
|
|
raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.") |
|
|
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path: |
|
|
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve())) |
|
|
|
|
|
add_deps_to_path() |
|
|
|
|
|
|
|
|
from inference import ( |
|
|
create_ltx_video_pipeline, create_latent_upsampler, |
|
|
load_image_to_tensor_with_resize_and_crop, seed_everething, |
|
|
calculate_padding, load_media_file |
|
|
) |
|
|
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem |
|
|
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy |
|
|
|
|
|
|
|
|
GPU_MAPPING = [ |
|
|
{'base': 'cuda:0', 'upscaler': 'cuda:2'}, |
|
|
{'base': 'cuda:1', 'upscaler': 'cuda:3'} |
|
|
] |
|
|
|
|
|
class VideoService: |
|
|
def __init__(self): |
|
|
print("Inicializando VideoService (modo Lazy Loading)...") |
|
|
self.models_loaded = False |
|
|
self.workers = None |
|
|
self.config = self._load_config() |
|
|
self.models_dir = "downloaded_models" |
|
|
self.loading_lock = threading.Lock() |
|
|
|
|
|
def _ensure_models_are_loaded(self): |
|
|
"""Verifica se os modelos estão carregados e os carrega se não estiverem.""" |
|
|
with self.loading_lock: |
|
|
if not self.models_loaded: |
|
|
print("Primeira requisição recebida. Iniciando carregamento dos modelos...") |
|
|
if torch.cuda.is_available() and torch.cuda.device_count() < 4: |
|
|
raise RuntimeError(f"Este serviço está configurado para 4 GPUs, mas apenas {torch.cuda.device_count()} foram encontradas.") |
|
|
|
|
|
self._download_model_files() |
|
|
self.workers = self._initialize_workers() |
|
|
self.models_loaded = True |
|
|
print(f"Modelos carregados com sucesso. {len(self.workers)} workers prontos.") |
|
|
|
|
|
def _load_config(self): |
|
|
config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml" |
|
|
with open(config_file_path, "r") as file: |
|
|
return yaml.safe_load(file) |
|
|
|
|
|
def _download_model_files(self): |
|
|
Path(self.models_dir).mkdir(parents=True, exist_ok=True) |
|
|
LTX_REPO = "Lightricks/LTX-Video" |
|
|
print("Baixando arquivos de modelo (se necessário)...") |
|
|
self.distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=self.models_dir) |
|
|
self.spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], local_dir=self.models_dir) |
|
|
print("Download de modelos concluído.") |
|
|
|
|
|
def _load_models_for_worker(self, base_device, upscaler_device): |
|
|
print(f"Carregando modelo base para {base_device} e upscaler para {upscaler_device}") |
|
|
pipeline = create_ltx_video_pipeline( |
|
|
ckpt_path=self.distilled_model_path, precision=self.config["precision"], |
|
|
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], |
|
|
sampler=self.config["sampler"], device="cpu", enhance_prompt=False, |
|
|
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], |
|
|
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"], |
|
|
) |
|
|
latent_upsampler = create_latent_upsampler(self.spatial_upscaler_path, device="cpu") |
|
|
pipeline.to(base_device) |
|
|
latent_upsampler.to(upscaler_device) |
|
|
return pipeline, latent_upsampler |
|
|
|
|
|
def _initialize_workers(self): |
|
|
workers = [] |
|
|
for i, mapping in enumerate(GPU_MAPPING): |
|
|
print(f"--- Inicializando Worker {i} ---") |
|
|
pipeline, latent_upsampler = self._load_models_for_worker(mapping['base'], mapping['upscaler']) |
|
|
workers.append({"id": i, "base_pipeline": pipeline, "latent_upsampler": latent_upsampler, "devices": mapping, "lock": threading.Lock()}) |
|
|
return workers |
|
|
|
|
|
def _acquire_worker(self): |
|
|
while True: |
|
|
for worker in self.workers: |
|
|
if worker["lock"].acquire(blocking=False): |
|
|
print(f"Worker {worker['id']} adquirido para uma nova tarefa.") |
|
|
return worker |
|
|
time.sleep(0.1) |
|
|
|
|
|
def generate(self, prompt, negative_prompt, input_image_filepath=None, input_video_filepath=None, |
|
|
height=512, width=704, mode="text-to-video", duration=2.0, |
|
|
frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=1.0, |
|
|
improve_texture=True, progress_callback=None): |
|
|
|
|
|
|
|
|
self._ensure_models_are_loaded() |
|
|
|
|
|
worker = self._acquire_worker() |
|
|
base_device = worker['devices']['base'] |
|
|
upscaler_device = worker['devices']['upscaler'] |
|
|
|
|
|
try: |
|
|
|
|
|
if mode == "image-to-video" and not input_image_filepath: raise ValueError("Caminho da imagem é obrigatório para o modo image-to-video") |
|
|
if mode == "video-to-video" and not input_video_filepath: raise ValueError("Caminho do vídeo é obrigatório para o modo video-to-video") |
|
|
|
|
|
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed) |
|
|
seed_everething(used_seed) |
|
|
|
|
|
FPS = 24.0; MAX_NUM_FRAMES = 257 |
|
|
target_frames_rounded = round(duration * FPS) |
|
|
n_val = round((float(target_frames_rounded) - 1.0) / 8.0) |
|
|
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1))) |
|
|
|
|
|
height_padded = ((height - 1) // 32 + 1) * 32 |
|
|
width_padded = ((width - 1) // 32 + 1) * 32 |
|
|
padding_values = calculate_padding(height, width, height_padded, width_padded) |
|
|
pad_left, pad_right, pad_top, pad_bottom = padding_values |
|
|
|
|
|
call_kwargs_base = { |
|
|
"prompt": prompt, "negative_prompt": negative_prompt, "num_frames": actual_num_frames, "frame_rate": int(FPS), |
|
|
"decode_timestep": 0.05, "decode_noise_scale": self.config["decode_noise_scale"], |
|
|
"stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.025, |
|
|
"is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (self.config["precision"] == "mixed_precision"), |
|
|
"offload_to_cpu": False, "enhance_prompt": False, "skip_layer_strategy": SkipLayerStrategy.AttentionValues |
|
|
} |
|
|
|
|
|
result_tensor = None |
|
|
if improve_texture: |
|
|
downscale_factor = self.config.get("downscale_factor", 0.5) |
|
|
downscaled_height_ideal = int(height_padded * downscale_factor); downscaled_width_ideal = int(width_padded * downscale_factor) |
|
|
downscaled_height = ((downscaled_height_ideal - 1) // 32 + 1) * 32; downscaled_width = ((downscaled_width_ideal - 1) // 32 + 1) * 32 |
|
|
|
|
|
|
|
|
first_pass_kwargs = call_kwargs_base.copy() |
|
|
first_pass_kwargs.update({ |
|
|
"height": downscaled_height, "width": downscaled_width, |
|
|
"generator": torch.Generator(device=base_device).manual_seed(used_seed), |
|
|
"output_type": "latent", "guidance_scale": 1.0, |
|
|
"timesteps": self.config["first_pass"]["timesteps"], |
|
|
"stg_scale": self.config["first_pass"]["stg_scale"], |
|
|
"rescaling_scale": self.config["first_pass"]["rescaling_scale"], |
|
|
"skip_block_list": self.config["first_pass"]["skip_block_list"] |
|
|
}) |
|
|
|
|
|
if mode == "image-to-video": |
|
|
padding_low_res = calculate_padding(downscaled_height, downscaled_width, downscaled_height, downscaled_width) |
|
|
media_tensor_low_res = load_image_to_tensor_with_resize_and_crop(input_image_filepath, downscaled_height, downscaled_width) |
|
|
media_tensor_low_res = torch.nn.functional.pad(media_tensor_low_res, padding_low_res) |
|
|
first_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_low_res.to(base_device), 0, 1.0)] |
|
|
|
|
|
print(f"Worker {worker['id']}: Iniciando passe 1 em {base_device}") |
|
|
with torch.no_grad(): low_res_latents = worker['base_pipeline'](**first_pass_kwargs).images |
|
|
|
|
|
low_res_latents = low_res_latents.to(upscaler_device) |
|
|
with torch.no_grad(): high_res_latents = worker['latent_upsampler'](low_res_latents) |
|
|
high_res_latents = high_res_latents.to(base_device) |
|
|
|
|
|
|
|
|
second_pass_kwargs = call_kwargs_base.copy() |
|
|
high_res_h, high_res_w = downscaled_height * 2, downscaled_width * 2 |
|
|
second_pass_kwargs.update({ |
|
|
"height": high_res_h, "width": high_res_w, "latents": high_res_latents, |
|
|
"generator": torch.Generator(device=base_device).manual_seed(used_seed), |
|
|
"output_type": "pt", "image_cond_noise_scale": 0.0, "guidance_scale": 1.0, |
|
|
"timesteps": self.config["second_pass"]["timesteps"], |
|
|
"stg_scale": self.config["second_pass"]["stg_scale"], |
|
|
"rescaling_scale": self.config["second_pass"]["rescaling_scale"], |
|
|
"skip_block_list": self.config["second_pass"]["skip_block_list"], |
|
|
"tone_map_compression_ratio": self.config["second_pass"].get("tone_map_compression_ratio", 0.0) |
|
|
}) |
|
|
|
|
|
if mode == "image-to-video": |
|
|
padding_high_res = calculate_padding(high_res_h, high_res_w, high_res_h, high_res_w) |
|
|
media_tensor_high_res = load_image_to_tensor_with_resize_and_crop(input_image_filepath, high_res_h, high_res_w) |
|
|
media_tensor_high_res = torch.nn.functional.pad(media_tensor_high_res, padding_high_res) |
|
|
second_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_high_res.to(base_device), 0, 1.0)] |
|
|
|
|
|
print(f"Worker {worker['id']}: Iniciando passe 2 em {base_device}") |
|
|
with torch.no_grad(): result_tensor = worker['base_pipeline'](**second_pass_kwargs).images |
|
|
|
|
|
else: |
|
|
single_pass_kwargs = call_kwargs_base.copy() |
|
|
first_pass_config = self.config["first_pass"] |
|
|
single_pass_kwargs.update({ |
|
|
"height": height_padded, "width": width_padded, "output_type": "pt", |
|
|
"generator": torch.Generator(device=base_device).manual_seed(used_seed), |
|
|
"guidance_scale": 1.0, **first_pass_config |
|
|
}) |
|
|
if mode == "image-to-video": |
|
|
media_tensor_final = load_image_to_tensor_with_resize_and_crop(input_image_filepath, height_padded, width_padded) |
|
|
media_tensor_final = torch.nn.functional.pad(media_tensor_final, padding_values) |
|
|
single_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_final.to(base_device), 0, 1.0)] |
|
|
elif mode == "video-to-video": |
|
|
single_pass_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=height_padded, width=width_padded, max_frames=int(frames_to_use), padding=padding_values).to(base_device) |
|
|
|
|
|
print(f"Worker {worker['id']}: Iniciando passe único em {base_device}") |
|
|
with torch.no_grad(): result_tensor = worker['base_pipeline'](**single_pass_kwargs).images |
|
|
|
|
|
if result_tensor.shape[-2:] != (height, width): |
|
|
num_frames_final = result_tensor.shape[2] |
|
|
videos_tensor = result_tensor.permute(0, 2, 1, 3, 4).reshape(-1, result_tensor.shape[1], result_tensor.shape[3], result_tensor.shape[4]) |
|
|
videos_resized = torch.nn.functional.interpolate(videos_tensor, size=(height, width), mode='bilinear', align_corners=False) |
|
|
result_tensor = videos_resized.reshape(result_tensor.shape[0], num_frames_final, result_tensor.shape[1], height, width).permute(0, 2, 1, 3, 4) |
|
|
|
|
|
result_tensor = result_tensor[:, :, :actual_num_frames, (pad_top if pad_top > 0 else None):(-pad_bottom if pad_bottom > 0 else None), (pad_left if pad_left > 0 else None):(-pad_right if pad_right > 0 else None)] |
|
|
video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8) |
|
|
temp_dir = tempfile.mkdtemp() |
|
|
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4") |
|
|
|
|
|
with imageio.get_writer(output_video_path, fps=call_kwargs_base["frame_rate"], codec='libx264', quality=8) as writer: |
|
|
for i, frame in enumerate(video_np): |
|
|
writer.append_data(frame) |
|
|
if progress_callback: progress_callback(i + 1, len(video_np)) |
|
|
return output_video_path, used_seed |
|
|
|
|
|
except Exception as e: |
|
|
print(f"!!!!!!!! ERRO no Worker {worker['id']} !!!!!!!!\n{e}") |
|
|
raise e |
|
|
finally: |
|
|
print(f"Worker {worker['id']}: Tarefa finalizada. Limpando cache e liberando worker...") |
|
|
with torch.cuda.device(base_device): torch.cuda.empty_cache() |
|
|
with torch.cuda.device(upscaler_device): torch.cuda.empty_cache() |
|
|
worker["lock"].release() |
|
|
|
|
|
|
|
|
video_generation_service = VideoService() |