|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
|
warnings.filterwarnings("ignore", message=".*") |
|
|
from huggingface_hub import logging |
|
|
logging.set_verbosity_error() |
|
|
logging.set_verbosity_warning() |
|
|
logging.set_verbosity_info() |
|
|
logging.set_verbosity_debug() |
|
|
LTXV_DEBUG=1 |
|
|
LTXV_FRAME_LOG_EVERY=8 |
|
|
import os, subprocess, shlex, tempfile |
|
|
import torch |
|
|
import json |
|
|
import numpy as np |
|
|
import random |
|
|
import os |
|
|
import shlex |
|
|
import yaml |
|
|
from typing import List, Dict |
|
|
from pathlib import Path |
|
|
import imageio |
|
|
from PIL import Image |
|
|
import tempfile |
|
|
from huggingface_hub import hf_hub_download |
|
|
import sys |
|
|
import subprocess |
|
|
import gc |
|
|
import shutil |
|
|
import contextlib |
|
|
import time |
|
|
import traceback |
|
|
from einops import rearrange |
|
|
import torch.nn.functional as F |
|
|
from managers.vae_manager import vae_manager_singleton |
|
|
from tools.video_encode_tool import video_encode_tool_singleton |
|
|
DEPS_DIR = Path("/data") |
|
|
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" |
|
|
|
|
|
|
|
|
|
|
|
def run_setup(): |
|
|
setup_script_path = "setup.py" |
|
|
if not os.path.exists(setup_script_path): |
|
|
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.") |
|
|
return |
|
|
try: |
|
|
print("[DEBUG] Executando setup.py para dependências...") |
|
|
subprocess.run([sys.executable, setup_script_path], check=True) |
|
|
print("[DEBUG] Setup concluído com sucesso.") |
|
|
except subprocess.CalledProcessError as e: |
|
|
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.") |
|
|
sys.exit(1) |
|
|
if not LTX_VIDEO_REPO_DIR.exists(): |
|
|
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...") |
|
|
run_setup() |
|
|
def add_deps_to_path(): |
|
|
repo_path = str(LTX_VIDEO_REPO_DIR.resolve()) |
|
|
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path: |
|
|
sys.path.insert(0, repo_path) |
|
|
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}") |
|
|
def calculate_padding(orig_h, orig_w, target_h, target_w): |
|
|
pad_h = target_h - orig_h |
|
|
pad_w = target_w - orig_w |
|
|
pad_top = pad_h // 2 |
|
|
pad_bottom = pad_h - pad_top |
|
|
pad_left = pad_w // 2 |
|
|
pad_right = pad_w - pad_left |
|
|
return (pad_left, pad_right, pad_top, pad_bottom) |
|
|
def log_tensor_info(tensor, name="Tensor"): |
|
|
if not isinstance(tensor, torch.Tensor): |
|
|
print(f"\n[INFO] '{name}' não é tensor.") |
|
|
return |
|
|
print(f"\n--- Tensor: {name} ---") |
|
|
print(f" - Shape: {tuple(tensor.shape)}") |
|
|
print(f" - Dtype: {tensor.dtype}") |
|
|
print(f" - Device: {tensor.device}") |
|
|
if tensor.numel() > 0: |
|
|
try: |
|
|
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}") |
|
|
except Exception: |
|
|
pass |
|
|
print("------------------------------------------\n") |
|
|
|
|
|
add_deps_to_path() |
|
|
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline |
|
|
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy |
|
|
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents |
|
|
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent |
|
|
from api.ltx.inference import ( |
|
|
create_ltx_video_pipeline, |
|
|
create_latent_upsampler, |
|
|
load_image_to_tensor_with_resize_and_crop, |
|
|
seed_everething, |
|
|
) |
|
|
|
|
|
class VideoService: |
|
|
def __init__(self): |
|
|
t0 = time.perf_counter() |
|
|
print("[DEBUG] Inicializando VideoService...") |
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
self.config = self._load_config() |
|
|
self.pipeline, self.latent_upsampler = self._load_models() |
|
|
self.pipeline.to(self.device) |
|
|
if self.latent_upsampler: |
|
|
self.latent_upsampler.to(self.device) |
|
|
self._apply_precision_policy() |
|
|
vae_manager_singleton.attach_pipeline( |
|
|
self.pipeline, |
|
|
device=self.device, |
|
|
autocast_dtype=self.runtime_autocast_dtype |
|
|
) |
|
|
self._tmp_dirs = set() |
|
|
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s") |
|
|
|
|
|
def _load_config(self): |
|
|
base = LTX_VIDEO_REPO_DIR / "configs" |
|
|
config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml" |
|
|
with open(config_path, "r") as file: |
|
|
return yaml.safe_load(file) |
|
|
|
|
|
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True): |
|
|
print("[DEBUG] Finalize: iniciando limpeza...") |
|
|
keep = set(keep_paths or []); extras = set(extra_paths or []) |
|
|
gc.collect() |
|
|
try: |
|
|
if clear_gpu and torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
try: |
|
|
torch.cuda.ipc_collect() |
|
|
except Exception: |
|
|
pass |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}") |
|
|
try: |
|
|
self._log_gpu_memory("Após finalize") |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}") |
|
|
|
|
|
def _load_models(self): |
|
|
t0 = time.perf_counter() |
|
|
LTX_REPO = "Lightricks/LTX-Video" |
|
|
print("[DEBUG] Baixando checkpoint principal...") |
|
|
distilled_model_path = hf_hub_download( |
|
|
repo_id=LTX_REPO, |
|
|
filename=self.config["checkpoint_path"], |
|
|
local_dir=os.getenv("HF_HOME"), |
|
|
cache_dir=os.getenv("HF_HOME_CACHE"), |
|
|
token=os.getenv("HF_TOKEN"), |
|
|
) |
|
|
self.config["checkpoint_path"] = distilled_model_path |
|
|
print(f"[DEBUG] Checkpoint em: {distilled_model_path}") |
|
|
|
|
|
print("[DEBUG] Baixando upscaler espacial...") |
|
|
spatial_upscaler_path = hf_hub_download( |
|
|
repo_id=LTX_REPO, |
|
|
filename=self.config["spatial_upscaler_model_path"], |
|
|
local_dir=os.getenv("HF_HOME"), |
|
|
cache_dir=os.getenv("HF_HOME_CACHE"), |
|
|
token=os.getenv("HF_TOKEN") |
|
|
) |
|
|
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path |
|
|
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}") |
|
|
|
|
|
print("[DEBUG] Construindo pipeline...") |
|
|
pipeline = create_ltx_video_pipeline( |
|
|
ckpt_path=self.config["checkpoint_path"], |
|
|
precision=self.config["precision"], |
|
|
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], |
|
|
sampler=self.config["sampler"], |
|
|
device="cpu", |
|
|
enhance_prompt=False, |
|
|
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], |
|
|
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"], |
|
|
) |
|
|
print("[DEBUG] Pipeline pronto.") |
|
|
|
|
|
latent_upsampler = None |
|
|
if self.config.get("spatial_upscaler_model_path"): |
|
|
print("[DEBUG] Construindo latent_upsampler...") |
|
|
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") |
|
|
print("[DEBUG] Upsampler pronto.") |
|
|
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s") |
|
|
return pipeline, latent_upsampler |
|
|
|
|
|
def _apply_precision_policy(self): |
|
|
prec = str(self.config.get("precision", "")).lower() |
|
|
self.runtime_autocast_dtype = torch.float32 |
|
|
if prec in ["float8_e4m3fn", "bfloat16"]: |
|
|
self.runtime_autocast_dtype = torch.bfloat16 |
|
|
elif prec == "mixed_precision": |
|
|
self.runtime_autocast_dtype = torch.float16 |
|
|
|
|
|
def _register_tmp_dir(self, d: str): |
|
|
if d and os.path.isdir(d): |
|
|
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}") |
|
|
|
|
|
@torch.no_grad() |
|
|
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor: |
|
|
try: |
|
|
if not self.latent_upsampler: |
|
|
raise ValueError("Latent Upsampler não está carregado.") |
|
|
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True) |
|
|
upsampled_latents = self.latent_upsampler(latents_unnormalized) |
|
|
return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True) |
|
|
except Exception as e: |
|
|
pass |
|
|
finally: |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.ipc_collect() |
|
|
self.finalize(keep_paths=[]) |
|
|
|
|
|
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values): |
|
|
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width) |
|
|
tensor = torch.nn.functional.pad(tensor, padding_values) |
|
|
return tensor.to(self.device, dtype=self.runtime_autocast_dtype) |
|
|
|
|
|
|
|
|
def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None): |
|
|
output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4") |
|
|
video_encode_tool_singleton.save_video_from_tensor( |
|
|
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback |
|
|
) |
|
|
final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4") |
|
|
shutil.move(output_path, final_path) |
|
|
print(f"[DEBUG] Vídeo salvo em: {final_path}") |
|
|
return final_path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int): |
|
|
if not items_list: return [] |
|
|
height_padded = ((height - 1) // 8 + 1) * 8 |
|
|
width_padded = ((width - 1) // 8 + 1) * 8 |
|
|
padding_values = calculate_padding(height, width, height_padded, width_padded) |
|
|
conditioning_items = [] |
|
|
for media, frame, weight in items_list: |
|
|
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values) if isinstance(media, str) else media.to(self.device, dtype=self.runtime_autocast_dtype) |
|
|
safe_frame = max(0, min(int(frame), num_frames - 1)) |
|
|
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight))) |
|
|
return conditioning_items |
|
|
|
|
|
def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None): |
|
|
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed) |
|
|
seed_everething(used_seed) |
|
|
FPS = 24.0 |
|
|
actual_num_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1)) |
|
|
height_padded = ((height - 1) // 8 + 1) * 8 |
|
|
width_padded = ((width - 1) // 8 + 1) * 8 |
|
|
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir) |
|
|
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) |
|
|
downscale_factor = self.config.get("downscale_factor", 0.6666666) |
|
|
vae_scale_factor = self.pipeline.vae_scale_factor |
|
|
x_width = int(width_padded * downscale_factor) |
|
|
downscaled_width = x_width - (x_width % vae_scale_factor) |
|
|
x_height = int(height_padded * downscale_factor) |
|
|
downscaled_height = x_height - (x_height % vae_scale_factor) |
|
|
first_pass_kwargs = { |
|
|
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width, |
|
|
"num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": torch.Generator(device=self.device).manual_seed(used_seed), |
|
|
"output_type": "latent", "conditioning_items": conditioning_items, "guidance_scale": float(guidance_scale), |
|
|
**(self.config.get("first_pass", {})) |
|
|
} |
|
|
try: |
|
|
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'): |
|
|
latents = self.pipeline(**first_pass_kwargs).images |
|
|
pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05))) |
|
|
video_path = self._save_and_log_video(pixel_tensor, "low_res_video", FPS, temp_dir, results_dir, used_seed) |
|
|
latents_cpu = latents.detach().to("cpu") |
|
|
tensor_path = os.path.join(results_dir, f"latents_low_res_{used_seed}.pt") |
|
|
torch.save(latents_cpu, tensor_path) |
|
|
return video_path, tensor_path, used_seed |
|
|
|
|
|
except Exception as e: |
|
|
pass |
|
|
finally: |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.ipc_collect() |
|
|
self.finalize(keep_paths=[]) |
|
|
|
|
|
def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed): |
|
|
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed) |
|
|
seed_everething(used_seed) |
|
|
temp_dir = tempfile.mkdtemp(prefix="ltxv_up_"); self._register_tmp_dir(temp_dir) |
|
|
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) |
|
|
latents_low = torch.load(latents_path).to(self.device) |
|
|
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'): |
|
|
upsampled_latents = self._upsample_latents_internal(latents_low) |
|
|
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents_low) |
|
|
del latents_low; torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
total_frames = upsampled_latents.shape[2] |
|
|
|
|
|
mid_point = max(1, total_frames // 2) |
|
|
chunk1 = upsampled_latents[:, :, :mid_point, :, :] |
|
|
|
|
|
chunk2 = upsampled_latents[:, :, mid_point - 1:, :, :] |
|
|
|
|
|
final_latents_list = [] |
|
|
for i, chunk in enumerate([chunk1, chunk2]): |
|
|
if chunk.shape[2] <= 1: continue |
|
|
second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor |
|
|
second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor |
|
|
second_pass_kwargs = { |
|
|
"prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height, "width": second_pass_width, |
|
|
"num_frames": chunk.shape[2], "latents": chunk, "guidance_scale": float(guidance_scale), |
|
|
"output_type": "latent", "generator": torch.Generator(device=self.device).manual_seed(used_seed), |
|
|
**(self.config.get("second_pass", {})) |
|
|
} |
|
|
refined_chunk = self.pipeline(**second_pass_kwargs).images |
|
|
|
|
|
if i == 0: |
|
|
final_latents_list.append(refined_chunk[:, :, :-1, :, :]) |
|
|
else: |
|
|
final_latents_list.append(refined_chunk) |
|
|
|
|
|
final_latents = torch.cat(final_latents_list, dim=2) |
|
|
log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais") |
|
|
|
|
|
latents_cpu = final_latents.detach().to("cpu") |
|
|
tensor_path = os.path.join(results_dir, f"latents_refined_{used_seed}.pt") |
|
|
torch.save(latents_cpu, tensor_path) |
|
|
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))) |
|
|
video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed) |
|
|
return video_path, tensor_path |
|
|
|
|
|
|
|
|
|
|
|
def encode_mp4(self, latents_path: str, fps: int = 24): |
|
|
latents = torch.load(latents_path) |
|
|
seed = random.randint(0, 99999) |
|
|
temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_"); self._register_tmp_dir(temp_dir) |
|
|
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
total_frames = latents.shape[2] |
|
|
mid_point = max(1, total_frames // 2) |
|
|
chunk1_latents = latents[:, :, :mid_point, :, :] |
|
|
chunk2_latents = latents[:, :, mid_point - 1:, :, :] |
|
|
|
|
|
video_parts = [] |
|
|
pixel_chunks_to_concat = [] |
|
|
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'): |
|
|
for i, chunk in enumerate([chunk1_latents, chunk2_latents]): |
|
|
if chunk.shape[2] == 0: continue |
|
|
pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05))) |
|
|
|
|
|
if i == 0: |
|
|
pixel_chunks_to_concat.append(pixel_chunk[:, :, :-1, :, :]) |
|
|
else: |
|
|
pixel_chunks_to_concat.append(pixel_chunk) |
|
|
|
|
|
final_pixel_tensor = torch.cat(pixel_chunks_to_concat, dim=2) |
|
|
final_video_path = self._save_and_log_video(final_pixel_tensor, f"final_concatenated_{seed}", fps, temp_dir, results_dir, seed) |
|
|
return final_video_path |
|
|
|
|
|
|
|
|
|
|
|
print("Criando instância do VideoService. O carregamento do modelo começará agora...") |
|
|
video_generation_service = VideoService() |
|
|
print("Instância do VideoService pronta para uso.") |