Update api/ltx_server.py
Browse files- api/ltx_server.py +10 -76
api/ltx_server.py
CHANGED
|
@@ -671,7 +671,7 @@ class VideoService:
|
|
| 671 |
multi_scale_pipeline = None
|
| 672 |
|
| 673 |
try:
|
| 674 |
-
if
|
| 675 |
if not self.latent_upsampler:
|
| 676 |
raise ValueError("Upscaler espacial não carregado.")
|
| 677 |
print("[DEBUG] Multi-escala: construindo pipeline...")
|
|
@@ -686,7 +686,7 @@ class VideoService:
|
|
| 686 |
{
|
| 687 |
"downscale_factor": self.config["downscale_factor"],
|
| 688 |
"first_pass": first_pass_args,
|
| 689 |
-
"second_pass":
|
| 690 |
}
|
| 691 |
)
|
| 692 |
print("[DEBUG] Chamando multi_scale_pipeline...")
|
|
@@ -703,84 +703,20 @@ class VideoService:
|
|
| 703 |
else:
|
| 704 |
latents = result
|
| 705 |
print(f"[DEBUG] Latentes (multi-escala): shape={tuple(latents.shape)}")
|
| 706 |
-
|
| 707 |
-
#if true:
|
| 708 |
single_pass_kwargs = call_kwargs.copy()
|
| 709 |
-
first_pass_config = self.config.get("first_pass", {})
|
| 710 |
-
|
| 711 |
single_pass_kwargs.update(
|
| 712 |
{
|
| 713 |
-
"
|
| 714 |
-
"stg_scale": first_pass_config.get("stg_scale"),
|
| 715 |
"stg_scale": first_pass_config.get("stg_scale"),
|
| 716 |
"rescaling_scale": first_pass_config.get("rescaling_scale"),
|
| 717 |
-
"guidance_timesteps": first_pass_config.get("guidance_timesteps"),
|
| 718 |
"skip_block_list": first_pass_config.get("skip_block_list"),
|
| 719 |
-
"num_inference_steps": first_pass_config.get("num_inference_steps"),
|
| 720 |
-
"skip_final_inference_steps": first_pass_config.get("skip_final_inference_steps"),
|
| 721 |
-
"cfg_star_rescale": first_pass_config.get("cfg_star_rescale"),
|
| 722 |
-
"downscale_factor": self.config["downscale_factor"],
|
| 723 |
-
|
| 724 |
-
#"guidance_scale": float(guidance_scale),
|
| 725 |
-
#"stg_scale": first_pass_config.get("stg_scale"),
|
| 726 |
-
#"rescaling_scale": first_pass_config.get("rescaling_scale"),
|
| 727 |
-
#"skip_block_list": first_pass_config.get("skip_block_list"),
|
| 728 |
-
}
|
| 729 |
-
)
|
| 730 |
-
#schedule =
|
| 731 |
-
#first_pass_config.get("timesteps") or
|
| 732 |
-
#first_pass_config.get("guidance_timesteps")
|
| 733 |
-
#if mode == "video-to-video":
|
| 734 |
-
# schedule = [0.7]; print("[INFO] Modo video-to-video (etapa única): timesteps=[0.7]")
|
| 735 |
-
#if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
|
| 736 |
-
# single_pass_kwargs["timesteps"] = schedule
|
| 737 |
-
# single_pass_kwargs["guidance_timesteps"] = schedule
|
| 738 |
-
#print(f"[DEBUG] Single-pass: timesteps_len={len(schedule) if schedule else 0}")
|
| 739 |
-
|
| 740 |
-
#print("\n[INFO] Executando pipeline de etapa única...")
|
| 741 |
-
#t_sp = time.perf_counter()
|
| 742 |
-
#ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
|
| 743 |
-
#with ctx:
|
| 744 |
-
# result = self.pipeline(**single_pass_kwargs)
|
| 745 |
-
#print(f"[DEBUG] single-pass tempo={time.perf_counter()-t_sp:.3f}s")
|
| 746 |
-
|
| 747 |
-
#if hasattr(result, "latents"):
|
| 748 |
-
# latents = result.latents
|
| 749 |
-
#elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
|
| 750 |
-
# latents = result.images
|
| 751 |
-
#else:
|
| 752 |
-
# latents = result
|
| 753 |
-
#print(f"[DEBUG] Latentes (single-pass) first : shape={tuple(latents.shape)}")
|
| 754 |
-
|
| 755 |
-
single_pass_kwargs = call_kwargs.copy()
|
| 756 |
-
first_pass_config = self.config.get("first_pass", {}).copy()
|
| 757 |
-
second_pass_args = self.config.get("second_pass", {}).copy()
|
| 758 |
-
second_pass = self.config.get("second_pass", {}).copy()
|
| 759 |
-
|
| 760 |
-
single_pass_kwargs.update(
|
| 761 |
-
{
|
| 762 |
-
"latents" : latents,
|
| 763 |
-
"skip_final_inference_steps": second_pass.get("skip_final_inference_steps"),
|
| 764 |
-
"stg_scale": second_pass.get("stg_scale"),
|
| 765 |
-
"stg_scale": second_pass.get("stg_scale"),
|
| 766 |
-
"rescaling_scale": second_pass.get("rescaling_scale"),
|
| 767 |
-
"guidance_timesteps": second_pass.get("guidance_timesteps"),
|
| 768 |
-
"skip_block_list": second_pass.get("skip_block_list"),
|
| 769 |
-
"num_inference_steps": second_pass.get("num_inference_steps"),
|
| 770 |
-
"skip_final_inference_steps": 0, #first_pass_config.get("skip_final_inference_steps"),
|
| 771 |
-
"skip_initial_inference_steps": 17,# second_pass.get("skip_initial_inference_steps"),
|
| 772 |
-
"cfg_star_rescale": second_pass.get("cfg_star_rescale"),
|
| 773 |
-
"downscale_factor": self.config["downscale_factor"],
|
| 774 |
-
"second_pass": second_pass_args,
|
| 775 |
-
#"guidance_scale": float(guidance_scale),
|
| 776 |
-
#"stg_scale": first_pass_config.get("stg_scale"),
|
| 777 |
-
#"rescaling_scale": first_pass_config.get("rescaling_scale"),
|
| 778 |
-
#"skip_block_list": first_pass_config.get("skip_block_list"),
|
| 779 |
}
|
| 780 |
)
|
| 781 |
-
schedule =
|
| 782 |
-
|
| 783 |
-
|
| 784 |
if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
|
| 785 |
single_pass_kwargs["timesteps"] = schedule
|
| 786 |
single_pass_kwargs["guidance_timesteps"] = schedule
|
|
@@ -799,10 +735,8 @@ class VideoService:
|
|
| 799 |
latents = result.images
|
| 800 |
else:
|
| 801 |
latents = result
|
| 802 |
-
print(f"[DEBUG] Latentes (single-pass)
|
| 803 |
-
|
| 804 |
|
| 805 |
-
|
| 806 |
# Staging e escrita MP4 (simples: VAE → pixels → MP4)
|
| 807 |
|
| 808 |
latents_cpu = latents.detach().to("cpu", non_blocking=True)
|
|
@@ -898,4 +832,4 @@ class VideoService:
|
|
| 898 |
print(f"[DEBUG] finalize() no finally falhou: {e}")
|
| 899 |
|
| 900 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 901 |
-
video_generation_service = VideoService()
|
|
|
|
| 671 |
multi_scale_pipeline = None
|
| 672 |
|
| 673 |
try:
|
| 674 |
+
if improve_texture:
|
| 675 |
if not self.latent_upsampler:
|
| 676 |
raise ValueError("Upscaler espacial não carregado.")
|
| 677 |
print("[DEBUG] Multi-escala: construindo pipeline...")
|
|
|
|
| 686 |
{
|
| 687 |
"downscale_factor": self.config["downscale_factor"],
|
| 688 |
"first_pass": first_pass_args,
|
| 689 |
+
"second_pass": second_pass_args,
|
| 690 |
}
|
| 691 |
)
|
| 692 |
print("[DEBUG] Chamando multi_scale_pipeline...")
|
|
|
|
| 703 |
else:
|
| 704 |
latents = result
|
| 705 |
print(f"[DEBUG] Latentes (multi-escala): shape={tuple(latents.shape)}")
|
| 706 |
+
else:
|
|
|
|
| 707 |
single_pass_kwargs = call_kwargs.copy()
|
| 708 |
+
first_pass_config = self.config.get("first_pass", {})
|
|
|
|
| 709 |
single_pass_kwargs.update(
|
| 710 |
{
|
| 711 |
+
"guidance_scale": float(guidance_scale),
|
|
|
|
| 712 |
"stg_scale": first_pass_config.get("stg_scale"),
|
| 713 |
"rescaling_scale": first_pass_config.get("rescaling_scale"),
|
|
|
|
| 714 |
"skip_block_list": first_pass_config.get("skip_block_list"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
}
|
| 716 |
)
|
| 717 |
+
schedule = first_pass_config.get("timesteps") or first_pass_config.get("guidance_timesteps")
|
| 718 |
+
if mode == "video-to-video":
|
| 719 |
+
schedule = [0.7]; print("[INFO] Modo video-to-video (etapa única): timesteps=[0.7]")
|
| 720 |
if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
|
| 721 |
single_pass_kwargs["timesteps"] = schedule
|
| 722 |
single_pass_kwargs["guidance_timesteps"] = schedule
|
|
|
|
| 735 |
latents = result.images
|
| 736 |
else:
|
| 737 |
latents = result
|
| 738 |
+
print(f"[DEBUG] Latentes (single-pass): shape={tuple(latents.shape)}")
|
|
|
|
| 739 |
|
|
|
|
| 740 |
# Staging e escrita MP4 (simples: VAE → pixels → MP4)
|
| 741 |
|
| 742 |
latents_cpu = latents.detach().to("cpu", non_blocking=True)
|
|
|
|
| 832 |
print(f"[DEBUG] finalize() no finally falhou: {e}")
|
| 833 |
|
| 834 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 835 |
+
video_generation_service = VideoService()
|