Create ltx_server_refactored.py
Browse files- api/ltx_server_refactored.py +452 -0
api/ltx_server_refactored.py
ADDED
|
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ltx_server_refactored.py — VideoService (Modular Version)
|
| 2 |
+
|
| 3 |
+
# --- 0. WARNINGS E AMBIENTE ---
|
| 4 |
+
import warnings
|
| 5 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 6 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 7 |
+
warnings.filterwarnings("ignore", message=".*")
|
| 8 |
+
from huggingface_hub import logging
|
| 9 |
+
logging.set_verbosity_error()
|
| 10 |
+
logging.set_verbosity_warning()
|
| 11 |
+
logging.set_verbosity_info()
|
| 12 |
+
logging.set_verbosity_debug()
|
| 13 |
+
LTXV_DEBUG=1
|
| 14 |
+
LTXV_FRAME_LOG_EVERY=8
|
| 15 |
+
import os, subprocess, shlex, tempfile
|
| 16 |
+
import torch
|
| 17 |
+
import json
|
| 18 |
+
import numpy as np
|
| 19 |
+
import random
|
| 20 |
+
import os
|
| 21 |
+
import shlex
|
| 22 |
+
import yaml
|
| 23 |
+
from typing import List, Dict
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
import imageio
|
| 26 |
+
from PIL import Image
|
| 27 |
+
import tempfile
|
| 28 |
+
from huggingface_hub import hf_hub_download
|
| 29 |
+
import sys
|
| 30 |
+
import subprocess
|
| 31 |
+
import gc
|
| 32 |
+
import shutil
|
| 33 |
+
import contextlib
|
| 34 |
+
import time
|
| 35 |
+
import traceback
|
| 36 |
+
from einops import rearrange
|
| 37 |
+
import torch.nn.functional as F
|
| 38 |
+
from managers.vae_manager import vae_manager_singleton
|
| 39 |
+
from tools.video_encode_tool import video_encode_tool_singleton
|
| 40 |
+
DEPS_DIR = Path("/data")
|
| 41 |
+
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 42 |
+
|
| 43 |
+
def run_setup():
|
| 44 |
+
setup_script_path = "setup.py"
|
| 45 |
+
if not os.path.exists(setup_script_path):
|
| 46 |
+
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
|
| 47 |
+
return
|
| 48 |
+
try:
|
| 49 |
+
print("[DEBUG] Executando setup.py para dependências...")
|
| 50 |
+
subprocess.run([sys.executable, setup_script_path], check=True)
|
| 51 |
+
print("[DEBUG] Setup concluído com sucesso.")
|
| 52 |
+
except subprocess.CalledProcessError as e:
|
| 53 |
+
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
|
| 54 |
+
sys.exit(1)
|
| 55 |
+
|
| 56 |
+
if not LTX_VIDEO_REPO_DIR.exists():
|
| 57 |
+
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
|
| 58 |
+
run_setup()
|
| 59 |
+
|
| 60 |
+
def add_deps_to_path():
|
| 61 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 62 |
+
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 63 |
+
sys.path.insert(0, repo_path)
|
| 64 |
+
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
|
| 65 |
+
|
| 66 |
+
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
|
| 67 |
+
try:
|
| 68 |
+
import psutil
|
| 69 |
+
import pynvml as nvml
|
| 70 |
+
nvml.nvmlInit()
|
| 71 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
|
| 72 |
+
try:
|
| 73 |
+
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
|
| 74 |
+
except Exception:
|
| 75 |
+
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
|
| 76 |
+
results = []
|
| 77 |
+
for p in procs:
|
| 78 |
+
pid = int(p.pid)
|
| 79 |
+
used_mb = None
|
| 80 |
+
try:
|
| 81 |
+
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
|
| 82 |
+
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
|
| 83 |
+
except Exception:
|
| 84 |
+
used_mb = None
|
| 85 |
+
name = "unknown"
|
| 86 |
+
user = "unknown"
|
| 87 |
+
try:
|
| 88 |
+
import psutil
|
| 89 |
+
pr = psutil.Process(pid)
|
| 90 |
+
name = pr.name()
|
| 91 |
+
user = pr.username()
|
| 92 |
+
except Exception:
|
| 93 |
+
pass
|
| 94 |
+
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
|
| 95 |
+
nvml.nvmlShutdown()
|
| 96 |
+
return results
|
| 97 |
+
except Exception:
|
| 98 |
+
return []
|
| 99 |
+
|
| 100 |
+
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
|
| 101 |
+
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
|
| 102 |
+
try:
|
| 103 |
+
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
|
| 104 |
+
except Exception:
|
| 105 |
+
return []
|
| 106 |
+
results = []
|
| 107 |
+
for line in out.strip().splitlines():
|
| 108 |
+
parts = [p.strip() for p in line.split(",")]
|
| 109 |
+
if len(parts) >= 3:
|
| 110 |
+
try:
|
| 111 |
+
pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
|
| 112 |
+
user = "unknown"
|
| 113 |
+
try:
|
| 114 |
+
import psutil
|
| 115 |
+
pr = psutil.Process(pid)
|
| 116 |
+
user = pr.username()
|
| 117 |
+
except Exception:
|
| 118 |
+
pass
|
| 119 |
+
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
|
| 120 |
+
except Exception:
|
| 121 |
+
continue
|
| 122 |
+
return results
|
| 123 |
+
|
| 124 |
+
def calculate_padding(orig_h, orig_w, target_h, target_w):
|
| 125 |
+
pad_h = target_h - orig_h
|
| 126 |
+
pad_w = target_w - orig_w
|
| 127 |
+
pad_top = pad_h // 2
|
| 128 |
+
pad_bottom = pad_h - pad_top
|
| 129 |
+
pad_left = pad_w // 2
|
| 130 |
+
pad_right = pad_w - pad_left
|
| 131 |
+
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 132 |
+
|
| 133 |
+
def calculate_new_dimensions(orig_w, orig_h, divisor=8):
|
| 134 |
+
if orig_w == 0 or orig_h == 0:
|
| 135 |
+
return 512, 512
|
| 136 |
+
if orig_w >= orig_h:
|
| 137 |
+
aspect_ratio = orig_w / orig_h
|
| 138 |
+
new_h = 512
|
| 139 |
+
new_w = new_h * aspect_ratio
|
| 140 |
+
else:
|
| 141 |
+
aspect_ratio = orig_h / orig_w
|
| 142 |
+
new_w = 512
|
| 143 |
+
new_h = new_w * aspect_ratio
|
| 144 |
+
final_w = int(round(new_w / divisor)) * divisor
|
| 145 |
+
final_h = int(round(new_h / divisor)) * divisor
|
| 146 |
+
final_w = max(divisor, final_w)
|
| 147 |
+
final_h = max(divisor, final_h)
|
| 148 |
+
print(f"[Dimension Calc] Original: {orig_w}x{orig_h} -> Calculado: {new_w:.0f}x{new_h:.0f} -> Final (divisível por {divisor}): {final_w}x{final_h}")
|
| 149 |
+
return final_h, final_w
|
| 150 |
+
|
| 151 |
+
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
|
| 152 |
+
if not processes:
|
| 153 |
+
return " - Processos ativos: (nenhum)\n"
|
| 154 |
+
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
|
| 155 |
+
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
|
| 156 |
+
for p in processes:
|
| 157 |
+
star = "*" if p["pid"] == current_pid else " "
|
| 158 |
+
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
|
| 159 |
+
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
|
| 160 |
+
return "\n".join(lines) + "\n"
|
| 161 |
+
|
| 162 |
+
def log_tensor_info(tensor, name="Tensor"):
|
| 163 |
+
if not isinstance(tensor, torch.Tensor):
|
| 164 |
+
print(f"\n[INFO] '{name}' não é tensor.")
|
| 165 |
+
return
|
| 166 |
+
print(f"\n--- Tensor: {name} ---")
|
| 167 |
+
print(f" - Shape: {tuple(tensor.shape)}")
|
| 168 |
+
print(f" - Dtype: {tensor.dtype}")
|
| 169 |
+
print(f" - Device: {tensor.device}")
|
| 170 |
+
if tensor.numel() > 0:
|
| 171 |
+
try:
|
| 172 |
+
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}")
|
| 173 |
+
except Exception:
|
| 174 |
+
pass
|
| 175 |
+
print("------------------------------------------\n")
|
| 176 |
+
|
| 177 |
+
add_deps_to_path()
|
| 178 |
+
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 179 |
+
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 180 |
+
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
|
| 181 |
+
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
|
| 182 |
+
from api.ltx.inference import (
|
| 183 |
+
create_ltx_video_pipeline,
|
| 184 |
+
create_latent_upsampler,
|
| 185 |
+
load_image_to_tensor_with_resize_and_crop,
|
| 186 |
+
seed_everething,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
class VideoService:
|
| 190 |
+
def __init__(self):
|
| 191 |
+
t0 = time.perf_counter()
|
| 192 |
+
print("[DEBUG] Inicializando VideoService...")
|
| 193 |
+
self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
|
| 194 |
+
self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
|
| 195 |
+
self.config = self._load_config()
|
| 196 |
+
print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
|
| 197 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 198 |
+
print(f"[DEBUG] Device selecionado: {self.device}")
|
| 199 |
+
self.last_memory_reserved_mb = 0.0
|
| 200 |
+
self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []
|
| 201 |
+
|
| 202 |
+
self.pipeline, self.latent_upsampler = self._load_models()
|
| 203 |
+
print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")
|
| 204 |
+
|
| 205 |
+
print(f"[DEBUG] Movendo modelos para {self.device}...")
|
| 206 |
+
self.pipeline.to(self.device)
|
| 207 |
+
if self.latent_upsampler:
|
| 208 |
+
self.latent_upsampler.to(self.device)
|
| 209 |
+
|
| 210 |
+
self._apply_precision_policy()
|
| 211 |
+
print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")
|
| 212 |
+
|
| 213 |
+
vae_manager_singleton.attach_pipeline(
|
| 214 |
+
self.pipeline,
|
| 215 |
+
device=self.device,
|
| 216 |
+
autocast_dtype=self.runtime_autocast_dtype
|
| 217 |
+
)
|
| 218 |
+
print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}")
|
| 219 |
+
|
| 220 |
+
if self.device == "cuda":
|
| 221 |
+
torch.cuda.empty_cache()
|
| 222 |
+
self._log_gpu_memory("Após carregar modelos")
|
| 223 |
+
|
| 224 |
+
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
|
| 225 |
+
|
| 226 |
+
def _log_gpu_memory(self, stage_name: str):
|
| 227 |
+
if self.device != "cuda":
|
| 228 |
+
return
|
| 229 |
+
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
|
| 230 |
+
current_reserved_b = torch.cuda.memory_reserved(device_index)
|
| 231 |
+
current_reserved_mb = current_reserved_b / (1024 ** 2)
|
| 232 |
+
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
|
| 233 |
+
total_memory_mb = total_memory_b / (1024 ** 2)
|
| 234 |
+
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
|
| 235 |
+
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
|
| 236 |
+
processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
|
| 237 |
+
print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
|
| 238 |
+
print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)")
|
| 239 |
+
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
|
| 240 |
+
print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
|
| 241 |
+
print(_gpu_process_table(processes, os.getpid()), end="")
|
| 242 |
+
print("--------------------------------------------------\n")
|
| 243 |
+
self.last_memory_reserved_mb = current_reserved_mb
|
| 244 |
+
|
| 245 |
+
def _register_tmp_dir(self, d: str):
|
| 246 |
+
if d and os.path.isdir(d):
|
| 247 |
+
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
|
| 248 |
+
|
| 249 |
+
def _register_tmp_file(self, f: str):
|
| 250 |
+
if f and os.path.exists(f):
|
| 251 |
+
self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")
|
| 252 |
+
|
| 253 |
+
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
|
| 254 |
+
print("[DEBUG] Finalize: iniciando limpeza...")
|
| 255 |
+
keep = set(keep_paths or []); extras = set(extra_paths or [])
|
| 256 |
+
removed_files = 0
|
| 257 |
+
for f in list(self._tmp_files | extras):
|
| 258 |
+
try:
|
| 259 |
+
if f not in keep and os.path.isfile(f):
|
| 260 |
+
os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
|
| 261 |
+
except Exception as e:
|
| 262 |
+
print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
|
| 263 |
+
finally:
|
| 264 |
+
self._tmp_files.discard(f)
|
| 265 |
+
removed_dirs = 0
|
| 266 |
+
for d in list(self._tmp_dirs):
|
| 267 |
+
try:
|
| 268 |
+
if d not in keep and os.path.isdir(d):
|
| 269 |
+
shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
|
| 270 |
+
except Exception as e:
|
| 271 |
+
print(f"[DEBUG] Falha removendo diretório {d}: {e}")
|
| 272 |
+
finally:
|
| 273 |
+
self._tmp_dirs.discard(d)
|
| 274 |
+
print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
|
| 275 |
+
gc.collect()
|
| 276 |
+
try:
|
| 277 |
+
if clear_gpu and torch.cuda.is_available():
|
| 278 |
+
torch.cuda.empty_cache()
|
| 279 |
+
try:
|
| 280 |
+
torch.cuda.ipc_collect()
|
| 281 |
+
except Exception:
|
| 282 |
+
pass
|
| 283 |
+
except Exception as e:
|
| 284 |
+
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
|
| 285 |
+
try:
|
| 286 |
+
self._log_gpu_memory("Após finalize")
|
| 287 |
+
except Exception as e:
|
| 288 |
+
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
|
| 289 |
+
|
| 290 |
+
def _load_config(self):
|
| 291 |
+
base = LTX_VIDEO_REPO_DIR / "configs"
|
| 292 |
+
config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 293 |
+
print(f"[DEBUG] Carregando config: {config_path}")
|
| 294 |
+
with open(config_path, "r") as file:
|
| 295 |
+
return yaml.safe_load(file)
|
| 296 |
+
|
| 297 |
+
def _load_models(self):
|
| 298 |
+
t0 = time.perf_counter()
|
| 299 |
+
LTX_REPO = "Lightricks/LTX-Video"
|
| 300 |
+
print("[DEBUG] Baixando checkpoint principal...")
|
| 301 |
+
distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"])
|
| 302 |
+
self.config["checkpoint_path"] = distilled_model_path
|
| 303 |
+
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
|
| 304 |
+
|
| 305 |
+
print("[DEBUG] Baixando upscaler espacial...")
|
| 306 |
+
spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"])
|
| 307 |
+
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
|
| 308 |
+
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
|
| 309 |
+
|
| 310 |
+
print("[DEBUG] Construindo pipeline...")
|
| 311 |
+
pipeline = create_ltx_video_pipeline(
|
| 312 |
+
ckpt_path=self.config["checkpoint_path"],
|
| 313 |
+
precision=self.config["precision"],
|
| 314 |
+
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 315 |
+
sampler=self.config["sampler"], device="cpu", enhance_prompt=False,
|
| 316 |
+
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
|
| 317 |
+
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
|
| 318 |
+
)
|
| 319 |
+
print("[DEBUG] Pipeline pronto.")
|
| 320 |
+
|
| 321 |
+
latent_upsampler = None
|
| 322 |
+
if self.config.get("spatial_upscaler_model_path"):
|
| 323 |
+
print("[DEBUG] Construindo latent_upsampler...")
|
| 324 |
+
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 325 |
+
print("[DEBUG] Upsampler pronto.")
|
| 326 |
+
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
|
| 327 |
+
return pipeline, latent_upsampler
|
| 328 |
+
|
| 329 |
+
@torch.no_grad()
|
| 330 |
+
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
|
| 331 |
+
if not self.latent_upsampler:
|
| 332 |
+
raise ValueError("Latent Upsampler não está carregado.")
|
| 333 |
+
self.latent_upsampler.to(self.device)
|
| 334 |
+
self.pipeline.vae.to(self.device)
|
| 335 |
+
print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}")
|
| 336 |
+
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 337 |
+
upsampled_latents = self.latent_upsampler(latents_unnormalized)
|
| 338 |
+
upsampled_latents_normalized = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 339 |
+
print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents_normalized.shape)}")
|
| 340 |
+
return upsampled_latents_normalized
|
| 341 |
+
|
| 342 |
+
def _apply_precision_policy(self):
|
| 343 |
+
prec = str(self.config.get("precision", "")).lower()
|
| 344 |
+
self.runtime_autocast_dtype = torch.float32
|
| 345 |
+
print(f"[DEBUG] Aplicando política de precisão: {prec}")
|
| 346 |
+
if prec in ["float8_e4m3fn", "bfloat16"]:
|
| 347 |
+
self.runtime_autocast_dtype = torch.bfloat16
|
| 348 |
+
elif prec == "mixed_precision":
|
| 349 |
+
self.runtime_autocast_dtype = torch.float16
|
| 350 |
+
|
| 351 |
+
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
|
| 352 |
+
print(f"[DEBUG] Carregando condicionamento: {filepath}")
|
| 353 |
+
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 354 |
+
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 355 |
+
out = tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 356 |
+
print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
|
| 357 |
+
return out
|
| 358 |
+
|
| 359 |
+
def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
|
| 360 |
+
if not mp4_list:
|
| 361 |
+
raise ValueError("A lista de MP4s para concatenar está vazia.")
|
| 362 |
+
if len(mp4_list) == 1:
|
| 363 |
+
shutil.move(mp4_list[0], out_path)
|
| 364 |
+
print(f"[DEBUG] Apenas um vídeo, movido para: {out_path}")
|
| 365 |
+
return
|
| 366 |
+
|
| 367 |
+
with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f:
|
| 368 |
+
for mp4 in mp4_list:
|
| 369 |
+
f.write(f"file '{os.path.abspath(mp4)}'\n")
|
| 370 |
+
list_path = f.name
|
| 371 |
+
|
| 372 |
+
cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
|
| 373 |
+
print(f"[DEBUG] Concat: {cmd}")
|
| 374 |
+
|
| 375 |
+
try:
|
| 376 |
+
subprocess.check_call(shlex.split(cmd))
|
| 377 |
+
finally:
|
| 378 |
+
os.remove(list_path)
|
| 379 |
+
|
| 380 |
+
def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
|
| 381 |
+
"""Função auxiliar para salvar um tensor de pixels em um arquivo MP4."""
|
| 382 |
+
output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4")
|
| 383 |
+
|
| 384 |
+
video_encode_tool_singleton.save_video_from_tensor(
|
| 385 |
+
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4")
|
| 389 |
+
shutil.move(output_path, final_path)
|
| 390 |
+
print(f"[DEBUG] Vídeo salvo em: {final_path}")
|
| 391 |
+
return final_path
|
| 392 |
+
|
| 393 |
+
# ==============================================================================
|
| 394 |
+
# --- NOVAS FUNÇÕES MODULARES ---
|
| 395 |
+
# ==============================================================================
|
| 396 |
+
|
| 397 |
+
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int):
|
| 398 |
+
"""
|
| 399 |
+
Prepara a lista de tensores de condicionamento a partir de uma lista de imagens ou tensores.
|
| 400 |
+
Formato da lista de entrada: [[media_path_ou_tensor, frame_alvo, peso], ...]
|
| 401 |
+
"""
|
| 402 |
+
if not items_list:
|
| 403 |
+
return []
|
| 404 |
+
|
| 405 |
+
height_padded = ((height - 1) // 8 + 1) * 8
|
| 406 |
+
width_padded = ((width - 1) // 8 + 1) * 8
|
| 407 |
+
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 408 |
+
|
| 409 |
+
conditioning_items = []
|
| 410 |
+
print("\n--- Preparando Itens de Condicionamento ---")
|
| 411 |
+
for item in items_list:
|
| 412 |
+
media, frame, weight = item
|
| 413 |
+
|
| 414 |
+
if isinstance(media, str):
|
| 415 |
+
print(f" - Carregando imagem: {media} para o frame {frame}")
|
| 416 |
+
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
|
| 417 |
+
elif isinstance(media, torch.Tensor):
|
| 418 |
+
print(f" - Usando tensor fornecido para o frame {frame}")
|
| 419 |
+
tensor = media.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 420 |
+
else:
|
| 421 |
+
warnings.warn(f"Tipo de item desconhecido: {type(media)}. Ignorando.")
|
| 422 |
+
continue
|
| 423 |
+
|
| 424 |
+
safe_frame = max(0, min(int(frame), num_frames - 1))
|
| 425 |
+
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 426 |
+
|
| 427 |
+
print(f"Total de itens de condicionamento preparados: {len(conditioning_items)}")
|
| 428 |
+
return conditioning_items
|
| 429 |
+
|
| 430 |
+
def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None):
|
| 431 |
+
"""
|
| 432 |
+
Gera um vídeo em baixa resolução (primeiro passe).
|
| 433 |
+
Retorna: (caminho_do_video_mp4, caminho_do_tensor_cpu, seed_usado)
|
| 434 |
+
"""
|
| 435 |
+
print("\n--- INICIANDO ETAPA 1: GERAÇÃO EM BAIXA RESOLUÇÃO ---")
|
| 436 |
+
self._log_gpu_memory("Início da Geração Low-Res")
|
| 437 |
+
|
| 438 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 439 |
+
seed_everething(used_seed)
|
| 440 |
+
|
| 441 |
+
FPS = 24.0
|
| 442 |
+
target_frames = round(duration * FPS)
|
| 443 |
+
actual_num_frames = max(9, int(round((target_frames - 1) / 8.0) * 8 + 1))
|
| 444 |
+
|
| 445 |
+
height_padded = ((height - 1) // 8 + 1) * 8
|
| 446 |
+
width_padded = ((width - 1) // 8 + 1) * 8
|
| 447 |
+
generator = torch.Generator(device=self.device).manual_seed(used_seed)
|
| 448 |
+
|
| 449 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir)
|
| 450 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 451 |
+
|
| 452 |
+
downscale_factor = self
|