EuuIia commited on
Commit
b6a9c29
·
verified ·
1 Parent(s): bc04cfa

Update api/ltx_server.py

Browse files
Files changed (1) hide show
  1. api/ltx_server.py +23 -18
api/ltx_server.py CHANGED
@@ -242,24 +242,6 @@ def log_tensor_info(tensor, name="Tensor"):
242
  print("------------------------------------------\n")
243
 
244
 
245
- @torch.no_grad()
246
- def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
247
- """
248
- Lógica extraída diretamente da LTXMultiScalePipeline para upscale de latentes.
249
- """
250
- if not self.latent_upsampler:
251
- raise ValueError("Latent Upsampler não está carregado.")
252
-
253
- # Garante que os modelos estejam no dispositivo correto
254
- self.latent_upsampler.to(self.device)
255
- self.pipeline.vae.to(self.device)
256
- print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}")
257
- latents = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
258
- upsampled_latents = self.latent_upsampler(latents)
259
- upsampled_latents = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
260
- print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents.shape)}")
261
-
262
- return upsampled_latents
263
 
264
 
265
 
@@ -453,6 +435,29 @@ class VideoService:
453
  pass
454
  print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")
455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456
  def _apply_precision_policy(self):
457
  prec = str(self.config.get("precision", "")).lower()
458
  self.runtime_autocast_dtype = torch.float32
 
242
  print("------------------------------------------\n")
243
 
244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
 
246
 
247
 
 
435
  pass
436
  print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")
437
 
438
+
439
+
440
+ @torch.no_grad()
441
+ def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
442
+ """
443
+ Lógica extraída diretamente da LTXMultiScalePipeline para upscale de latentes.
444
+ """
445
+ if not self.latent_upsampler:
446
+ raise ValueError("Latent Upsampler não está carregado.")
447
+
448
+ # Garante que os modelos estejam no dispositivo correto
449
+ self.latent_upsampler.to(self.device)
450
+ self.pipeline.vae.to(self.device)
451
+ print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}")
452
+ latents = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
453
+ upsampled_latents = self.latent_upsampler(latents)
454
+ upsampled_latents = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
455
+ print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents.shape)}")
456
+
457
+ return upsampled_latents
458
+
459
+
460
+
461
  def _apply_precision_policy(self):
462
  prec = str(self.config.get("precision", "")).lower()
463
  self.runtime_autocast_dtype = torch.float32