Upload ltx_server.py
Browse files- api/ltx_server.py +32 -87
api/ltx_server.py
CHANGED
|
@@ -575,100 +575,41 @@ class VideoService:
|
|
| 575 |
print(f"[DEBUG] media_items shape={tuple(media.shape)}")
|
| 576 |
|
| 577 |
latents = None
|
| 578 |
-
|
|
|
|
| 579 |
try:
|
| 580 |
if improve_texture:
|
| 581 |
if not self.latent_upsampler:
|
| 582 |
raise ValueError("Upscaler espacial não carregado.")
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
print("[DEBUG] Multi-escala: Iniciando Passo 1 (geração de latentes base).")
|
| 587 |
-
|
| 588 |
-
# 1. Configurar e executar o primeiro passo
|
| 589 |
first_pass_args = self.config.get("first_pass", {}).copy()
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
"stg_scale": first_pass_args.get("stg_scale"),
|
| 594 |
-
"rescaling_scale": first_pass_args.get("rescaling_scale"),
|
| 595 |
-
"skip_block_list": first_pass_args.get("skip_block_list"),
|
| 596 |
-
})
|
| 597 |
-
schedule = first_pass_args.get("timesteps") or first_pass_args.get("guidance_timesteps")
|
| 598 |
-
if schedule:
|
| 599 |
-
first_pass_kwargs["timesteps"] = schedule
|
| 600 |
-
first_pass_kwargs["guidance_timesteps"] = schedule
|
| 601 |
-
|
| 602 |
-
# Reduzir dimensões para o primeiro passo, garantindo divisibilidade por 24
|
| 603 |
-
downscale_factor = self.config.get("downscale_factor", 2)
|
| 604 |
-
original_height = first_pass_kwargs["height"]
|
| 605 |
-
original_width = first_pass_kwargs["width"]
|
| 606 |
-
divisor = 24
|
| 607 |
-
|
| 608 |
-
target_height_p1 = original_height // downscale_factor
|
| 609 |
-
first_pass_kwargs["height"] = round(target_height_p1 / divisor) * divisor
|
| 610 |
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
|
|
|
| 620 |
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
|
| 621 |
with ctx:
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
latents_low_res = first_pass_result.latents if hasattr(first_pass_result, "latents") else first_pass_result
|
| 625 |
-
print(f"[DEBUG] Passo 1 concluído em {time.perf_counter()-t_p1:.3f}s. Shape dos latentes de baixa resolução: {tuple(latents_low_res.shape)}")
|
| 626 |
-
log_tensor_info(latents_low_res, "Latentes (Passo 1)")
|
| 627 |
-
|
| 628 |
-
del first_pass_result
|
| 629 |
-
gc.collect()
|
| 630 |
-
if self.device == "cuda": torch.cuda.empty_cache()
|
| 631 |
-
|
| 632 |
-
# 2. Upscale dos latentes
|
| 633 |
-
print("[DEBUG] Multi-escala: Fazendo upscale dos latentes com latent_upsampler.")
|
| 634 |
-
with ctx:
|
| 635 |
-
# Chamada corrigida: posicional, sem argumentos de palavra-chave extras
|
| 636 |
-
latents_high_res = self.latent_upsampler(latents_low_res)
|
| 637 |
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
print("[DEBUG]
|
| 645 |
-
second_pass_args = self.config.get("second_pass", {}).copy()
|
| 646 |
-
|
| 647 |
-
second_pass_kwargs = call_kwargs.copy()
|
| 648 |
-
second_pass_kwargs["height"] = original_height
|
| 649 |
-
second_pass_kwargs["width"] = original_width
|
| 650 |
-
|
| 651 |
-
second_pass_kwargs.update({
|
| 652 |
-
"guidance_scale": float(guidance_scale),
|
| 653 |
-
"stg_scale": second_pass_args.get("stg_scale"),
|
| 654 |
-
"rescaling_scale": second_pass_args.get("rescaling_scale"),
|
| 655 |
-
"skip_block_list": second_pass_args.get("skip_block_list"),
|
| 656 |
-
})
|
| 657 |
-
|
| 658 |
-
schedule_p2 = second_pass_args.get("timesteps") or second_pass_args.get("guidance_timesteps")
|
| 659 |
-
if schedule_p2:
|
| 660 |
-
second_pass_kwargs["timesteps"] = schedule_p2
|
| 661 |
-
second_pass_kwargs["guidance_timesteps"] = schedule_p2
|
| 662 |
-
|
| 663 |
-
second_pass_kwargs["latents"] = latents_high_res
|
| 664 |
-
|
| 665 |
-
t_p2 = time.perf_counter()
|
| 666 |
-
with ctx:
|
| 667 |
-
second_pass_result = self.pipeline(**second_pass_kwargs)
|
| 668 |
-
|
| 669 |
-
latents = second_pass_result.latents if hasattr(second_pass_result, "latents") else second_pass_result
|
| 670 |
-
print(f"[DEBUG] Passo 2 concluído em {time.perf_counter()-t_p2:.3f}s. Shape dos latentes finais: {tuple(latents.shape)}")
|
| 671 |
-
|
| 672 |
else:
|
| 673 |
single_pass_kwargs = call_kwargs.copy()
|
| 674 |
first_pass_config = self.config.get("first_pass", {})
|
|
@@ -775,7 +716,11 @@ class VideoService:
|
|
| 775 |
del latents
|
| 776 |
except Exception:
|
| 777 |
pass
|
| 778 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 779 |
gc.collect()
|
| 780 |
try:
|
| 781 |
if self.device == "cuda":
|
|
@@ -793,4 +738,4 @@ class VideoService:
|
|
| 793 |
print(f"[DEBUG] finalize() no finally falhou: {e}")
|
| 794 |
|
| 795 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 796 |
-
video_generation_service = VideoService()
|
|
|
|
| 575 |
print(f"[DEBUG] media_items shape={tuple(media.shape)}")
|
| 576 |
|
| 577 |
latents = None
|
| 578 |
+
multi_scale_pipeline = None
|
| 579 |
+
|
| 580 |
try:
|
| 581 |
if improve_texture:
|
| 582 |
if not self.latent_upsampler:
|
| 583 |
raise ValueError("Upscaler espacial não carregado.")
|
| 584 |
+
print("[DEBUG] Multi-escala: construindo pipeline...")
|
| 585 |
+
multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 586 |
first_pass_args = self.config.get("first_pass", {}).copy()
|
| 587 |
+
first_pass_args["guidance_scale"] = float(guidance_scale)
|
| 588 |
+
second_pass_args = self.config.get("second_pass", {}).copy()
|
| 589 |
+
second_pass_args["guidance_scale"] = float(guidance_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
|
| 591 |
+
multi_scale_call_kwargs = call_kwargs.copy()
|
| 592 |
+
multi_scale_call_kwargs.update(
|
| 593 |
+
{
|
| 594 |
+
"downscale_factor": self.config["downscale_factor"],
|
| 595 |
+
"first_pass": first_pass_args,
|
| 596 |
+
"second_pass": second_pass_args,
|
| 597 |
+
}
|
| 598 |
+
)
|
| 599 |
+
print("[DEBUG] Chamando multi_scale_pipeline...")
|
| 600 |
+
t_ms = time.perf_counter()
|
| 601 |
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
|
| 602 |
with ctx:
|
| 603 |
+
result = multi_scale_pipeline(**multi_scale_call_kwargs)
|
| 604 |
+
print(f"[DEBUG] multi_scale_pipeline tempo={time.perf_counter()-t_ms:.3f}s")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 605 |
|
| 606 |
+
if hasattr(result, "latents"):
|
| 607 |
+
latents = result.latents
|
| 608 |
+
elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
|
| 609 |
+
latents = result.images
|
| 610 |
+
else:
|
| 611 |
+
latents = result
|
| 612 |
+
print(f"[DEBUG] Latentes (multi-escala): shape={tuple(latents.shape)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 613 |
else:
|
| 614 |
single_pass_kwargs = call_kwargs.copy()
|
| 615 |
first_pass_config = self.config.get("first_pass", {})
|
|
|
|
| 716 |
del latents
|
| 717 |
except Exception:
|
| 718 |
pass
|
| 719 |
+
try:
|
| 720 |
+
del multi_scale_pipeline
|
| 721 |
+
except Exception:
|
| 722 |
+
pass
|
| 723 |
+
|
| 724 |
gc.collect()
|
| 725 |
try:
|
| 726 |
if self.device == "cuda":
|
|
|
|
| 738 |
print(f"[DEBUG] finalize() no finally falhou: {e}")
|
| 739 |
|
| 740 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 741 |
+
video_generation_service = VideoService()
|