Eueuiaa commited on
Commit
c47500b
·
verified ·
1 Parent(s): 18e2ea8

Delete app (4).py

Browse files
Files changed (1) hide show
  1. app (4).py +0 -521
app (4).py DELETED
@@ -1,521 +0,0 @@
1
- import gradio as gr
2
- import torch
3
- import spaces
4
- import numpy as np
5
- import random
6
- import os
7
- import yaml
8
- from pathlib import Path
9
- import imageio
10
- import tempfile
11
- from PIL import Image
12
- from huggingface_hub import hf_hub_download
13
- import shutil
14
-
15
- from inference import (
16
- create_ltx_video_pipeline,
17
- create_latent_upsampler,
18
- load_image_to_tensor_with_resize_and_crop,
19
- seed_everething,
20
- get_device,
21
- calculate_padding,
22
- load_media_file
23
- )
24
- from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
25
- from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
26
-
27
- config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
28
- with open(config_file_path, "r") as file:
29
- PIPELINE_CONFIG_YAML = yaml.safe_load(file)
30
-
31
- LTX_REPO = "Lightricks/LTX-Video"
32
- MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
33
- MAX_NUM_FRAMES = 257
34
-
35
- FPS = 30.0
36
-
37
- # --- Global variables for loaded models ---
38
- pipeline_instance = None
39
- latent_upsampler_instance = None
40
- models_dir = "downloaded_models_gradio_cpu_init"
41
- Path(models_dir).mkdir(parents=True, exist_ok=True)
42
-
43
- print("Downloading models (if not present)...")
44
- distilled_model_actual_path = hf_hub_download(
45
- repo_id=LTX_REPO,
46
- filename=PIPELINE_CONFIG_YAML["checkpoint_path"],
47
- local_dir=models_dir,
48
- local_dir_use_symlinks=False
49
- )
50
- PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
51
- print(f"Distilled model path: {distilled_model_actual_path}")
52
-
53
- SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
54
- spatial_upscaler_actual_path = hf_hub_download(
55
- repo_id=LTX_REPO,
56
- filename=SPATIAL_UPSCALER_FILENAME,
57
- local_dir=models_dir,
58
- local_dir_use_symlinks=False
59
- )
60
- PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
61
- print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
62
-
63
- print("Creating LTX Video pipeline on CPU...")
64
- pipeline_instance = create_ltx_video_pipeline(
65
- ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
66
- precision=PIPELINE_CONFIG_YAML["precision"],
67
- text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
68
- sampler=PIPELINE_CONFIG_YAML["sampler"],
69
- device="cpu",
70
- enhance_prompt=False,
71
- prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
72
- prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
73
- )
74
- print("LTX Video pipeline created on CPU.")
75
-
76
- if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
77
- print("Creating latent upsampler on CPU...")
78
- latent_upsampler_instance = create_latent_upsampler(
79
- PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
80
- device="cpu"
81
- )
82
- print("Latent upsampler created on CPU.")
83
-
84
- target_inference_device = "cuda"
85
- print(f"Target inference device: {target_inference_device}")
86
- pipeline_instance.to(target_inference_device)
87
- if latent_upsampler_instance:
88
- latent_upsampler_instance.to(target_inference_device)
89
-
90
-
91
- # --- Helper function for dimension calculation ---
92
- MIN_DIM_SLIDER = 256 # As defined in the sliders minimum attribute
93
- TARGET_FIXED_SIDE = 768 # Desired fixed side length as per requirement
94
-
95
- def calculate_new_dimensions(orig_w, orig_h):
96
- """
97
- Calculates new dimensions for height and width sliders based on original media dimensions.
98
- Ensures one side is TARGET_FIXED_SIDE, the other is scaled proportionally,
99
- both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE].
100
- """
101
- if orig_w == 0 or orig_h == 0:
102
- # Default to TARGET_FIXED_SIDE square if original dimensions are invalid
103
- return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)
104
-
105
- if orig_w >= orig_h: # Landscape or square
106
- new_h = TARGET_FIXED_SIDE
107
- aspect_ratio = orig_w / orig_h
108
- new_w_ideal = new_h * aspect_ratio
109
-
110
- # Round to nearest multiple of 32
111
- new_w = round(new_w_ideal / 32) * 32
112
-
113
- # Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
114
- new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
115
- # Ensure new_h is also clamped (TARGET_FIXED_SIDE should be within these bounds if configured correctly)
116
- new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
117
- else: # Portrait
118
- new_w = TARGET_FIXED_SIDE
119
- aspect_ratio = orig_h / orig_w # Use H/W ratio for portrait scaling
120
- new_h_ideal = new_w * aspect_ratio
121
-
122
- # Round to nearest multiple of 32
123
- new_h = round(new_h_ideal / 32) * 32
124
-
125
- # Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
126
- new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
127
- # Ensure new_w is also clamped
128
- new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
129
-
130
- return int(new_h), int(new_w)
131
-
132
- def get_duration(prompt, negative_prompt, input_image_filepath, input_video_filepath,
133
- height_ui, width_ui, mode,
134
- duration_ui, # Removed ui_steps
135
- ui_frames_to_use,
136
- seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
137
- progress):
138
- if duration_ui > 7:
139
- return 75
140
- else:
141
- return 60
142
-
143
- @spaces.GPU(duration=get_duration)
144
- def generate(prompt, negative_prompt, input_image_filepath=None, input_video_filepath=None,
145
- height_ui=512, width_ui=704, mode="text-to-video",
146
- duration_ui=2.0,
147
- ui_frames_to_use=9,
148
- seed_ui=42, randomize_seed=True, ui_guidance_scale=3.0, improve_texture_flag=True,
149
- progress=gr.Progress(track_tqdm=True)):
150
- """
151
- Generate high-quality videos using LTX Video model with support for text-to-video, image-to-video, and video-to-video modes.
152
-
153
- Args:
154
- prompt (str): Text description of the desired video content. Required for all modes.
155
- negative_prompt (str): Text describing what to avoid in the generated video. Optional, can be empty string.
156
- input_image_filepath (str or None): Path to input image file. Required for image-to-video mode, None for other modes.
157
- input_video_filepath (str or None): Path to input video file. Required for video-to-video mode, None for other modes.
158
- height_ui (int): Height of the output video in pixels, must be divisible by 32. Default: 512.
159
- width_ui (int): Width of the output video in pixels, must be divisible by 32. Default: 704.
160
- mode (str): Generation mode. Required. One of "text-to-video", "image-to-video", or "video-to-video". Default: "text-to-video".
161
- duration_ui (float): Duration of the output video in seconds. Range: 0.3 to 8.5. Default: 2.0.
162
- ui_frames_to_use (int): Number of frames to use from input video. Only used in video-to-video mode. Must be N*8+1. Default: 9.
163
- seed_ui (int): Random seed for reproducible generation. Range: 0 to 2^32-1. Default: 42.
164
- randomize_seed (bool): Whether to use a random seed instead of seed_ui. Default: True.
165
- ui_guidance_scale (float): CFG scale controlling prompt influence. Range: 1.0 to 10.0. Higher values = stronger prompt influence. Default: 3.0.
166
- improve_texture_flag (bool): Whether to use multi-scale generation for better texture quality. Slower but higher quality. Default: True.
167
- progress (gr.Progress): Progress tracker for the generation process. Optional, used for UI updates.
168
-
169
- Returns:
170
- tuple: A tuple containing (output_video_path, used_seed) where output_video_path is the path to the generated video file and used_seed is the actual seed used for generation.
171
- """
172
-
173
- # Validate mode-specific required parameters
174
- if mode == "image-to-video":
175
- if not input_image_filepath:
176
- raise gr.Error("input_image_filepath is required for image-to-video mode")
177
- elif mode == "video-to-video":
178
- if not input_video_filepath:
179
- raise gr.Error("input_video_filepath is required for video-to-video mode")
180
- elif mode == "text-to-video":
181
- # No additional file inputs required for text-to-video
182
- pass
183
- else:
184
- raise gr.Error(f"Invalid mode: {mode}. Must be one of: text-to-video, image-to-video, video-to-video")
185
-
186
- if randomize_seed:
187
- seed_ui = random.randint(0, 2**32 - 1)
188
- seed_everething(int(seed_ui))
189
-
190
- target_frames_ideal = duration_ui * FPS
191
- target_frames_rounded = round(target_frames_ideal)
192
- if target_frames_rounded < 1:
193
- target_frames_rounded = 1
194
-
195
- n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
196
- actual_num_frames = int(n_val * 8 + 1)
197
-
198
- actual_num_frames = max(9, actual_num_frames)
199
- actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
200
-
201
- actual_height = int(height_ui)
202
- actual_width = int(width_ui)
203
-
204
- height_padded = ((actual_height - 1) // 32 + 1) * 32
205
- width_padded = ((actual_width - 1) // 32 + 1) * 32
206
- num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
207
- if num_frames_padded != actual_num_frames:
208
- print(f"Warning: actual_num_frames ({actual_num_frames}) and num_frames_padded ({num_frames_padded}) differ. Using num_frames_padded for pipeline.")
209
-
210
- padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
211
-
212
- call_kwargs = {
213
- "prompt": prompt,
214
- "negative_prompt": negative_prompt,
215
- "height": height_padded,
216
- "width": width_padded,
217
- "num_frames": num_frames_padded,
218
- "frame_rate": int(FPS),
219
- "generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
220
- "output_type": "pt",
221
- "conditioning_items": None,
222
- "media_items": None,
223
- "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
224
- "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
225
- "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
226
- "image_cond_noise_scale": 0.15,
227
- "is_video": True,
228
- "vae_per_channel_normalize": True,
229
- "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
230
- "offload_to_cpu": False,
231
- "enhance_prompt": False,
232
- }
233
-
234
- stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
235
- if stg_mode_str.lower() in ["stg_av", "attention_values"]:
236
- call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
237
- elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
238
- call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
239
- elif stg_mode_str.lower() in ["stg_r", "residual"]:
240
- call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
241
- elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
242
- call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
243
- else:
244
- raise ValueError(f"Invalid stg_mode: {stg_mode_str}")
245
-
246
- if mode == "image-to-video" and input_image_filepath:
247
- try:
248
- media_tensor = load_image_to_tensor_with_resize_and_crop(
249
- input_image_filepath, actual_height, actual_width
250
- )
251
- media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
252
- call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
253
- except Exception as e:
254
- print(f"Error loading image {input_image_filepath}: {e}")
255
- raise gr.Error(f"Could not load image: {e}")
256
- elif mode == "video-to-video" and input_video_filepath:
257
- try:
258
- call_kwargs["media_items"] = load_media_file(
259
- media_path=input_video_filepath,
260
- height=actual_height,
261
- width=actual_width,
262
- max_frames=int(ui_frames_to_use),
263
- padding=padding_values
264
- ).to(target_inference_device)
265
- except Exception as e:
266
- print(f"Error loading video {input_video_filepath}: {e}")
267
- raise gr.Error(f"Could not load video: {e}")
268
-
269
- print(f"Moving models to {target_inference_device} for inference (if not already there)...")
270
-
271
- active_latent_upsampler = None
272
- if improve_texture_flag and latent_upsampler_instance:
273
- active_latent_upsampler = latent_upsampler_instance
274
-
275
- result_images_tensor = None
276
- if improve_texture_flag:
277
- if not active_latent_upsampler:
278
- raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
279
-
280
- multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
281
-
282
- first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
283
- first_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
284
- # num_inference_steps will be derived from len(timesteps) in the pipeline
285
- first_pass_args.pop("num_inference_steps", None)
286
-
287
-
288
- second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
289
- second_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
290
- # num_inference_steps will be derived from len(timesteps) in the pipeline
291
- second_pass_args.pop("num_inference_steps", None)
292
-
293
- multi_scale_call_kwargs = call_kwargs.copy()
294
- multi_scale_call_kwargs.update({
295
- "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
296
- "first_pass": first_pass_args,
297
- "second_pass": second_pass_args,
298
- })
299
-
300
- print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
301
- result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
302
- else:
303
- single_pass_call_kwargs = call_kwargs.copy()
304
- first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {})
305
-
306
- single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps")
307
- single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
308
- single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale")
309
- single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale")
310
- single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list")
311
-
312
- # Remove keys that might conflict or are not used in single pass / handled by above
313
- single_pass_call_kwargs.pop("num_inference_steps", None)
314
- single_pass_call_kwargs.pop("first_pass", None)
315
- single_pass_call_kwargs.pop("second_pass", None)
316
- single_pass_call_kwargs.pop("downscale_factor", None)
317
-
318
- print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
319
- result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
320
-
321
- if result_images_tensor is None:
322
- raise gr.Error("Generation failed.")
323
-
324
- pad_left, pad_right, pad_top, pad_bottom = padding_values
325
- slice_h_end = -pad_bottom if pad_bottom > 0 else None
326
- slice_w_end = -pad_right if pad_right > 0 else None
327
-
328
- result_images_tensor = result_images_tensor[
329
- :, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
330
- ]
331
-
332
- video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
333
-
334
- video_np = np.clip(video_np, 0, 1)
335
- video_np = (video_np * 255).astype(np.uint8)
336
-
337
- temp_dir = tempfile.mkdtemp()
338
- timestamp = random.randint(10000,99999)
339
- output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
340
-
341
- try:
342
- with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
343
- for frame_idx in range(video_np.shape[0]):
344
- progress(frame_idx / video_np.shape[0], desc="Saving video")
345
- video_writer.append_data(video_np[frame_idx])
346
- except Exception as e:
347
- print(f"Error saving video with macro_block_size=1: {e}")
348
- try:
349
- with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
350
- for frame_idx in range(video_np.shape[0]):
351
- progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)")
352
- video_writer.append_data(video_np[frame_idx])
353
- except Exception as e2:
354
- print(f"Fallback video saving error: {e2}")
355
- raise gr.Error(f"Failed to save video: {e2}")
356
-
357
- return output_video_path, seed_ui
358
-
359
- def update_task_image():
360
- return "image-to-video"
361
-
362
- def update_task_text():
363
- return "text-to-video"
364
-
365
- def update_task_video():
366
- return "video-to-video"
367
-
368
- # --- Gradio UI Definition ---
369
- css="""
370
- #col-container {
371
- margin: 0 auto;
372
- max-width: 900px;
373
- }
374
- """
375
-
376
- with gr.Blocks(css=css) as demo:
377
- gr.Markdown("# LTX Video 0.9.8 13B Distilled")
378
- gr.Markdown("Fast high quality video generation.**Update (17/07):** now with the new v0.9.8 for improved prompt understanding and detail generation" )
379
- gr.Markdown("[Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.8-distilled.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video) [Diffusers](https://huggingface.co/Lightricks/LTX-Video-0.9.8-13B-distilled#diffusers-🧨)")
380
- with gr.Row():
381
- with gr.Column():
382
- with gr.Tab("image-to-video") as image_tab:
383
- video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
384
- image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"])
385
- i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
386
- i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
387
- with gr.Tab("text-to-video") as text_tab:
388
- image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
389
- video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
390
- t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
391
- t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
392
- with gr.Tab("video-to-video", visible=False) as video_tab:
393
- image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
394
- video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]) # type defaults to filepath
395
- frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
396
- v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
397
- v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
398
-
399
- duration_input = gr.Slider(
400
- label="Video Duration (seconds)",
401
- minimum=0.3,
402
- maximum=8.5,
403
- value=2,
404
- step=0.1,
405
- info=f"Target video duration (0.3s to 8.5s)"
406
- )
407
- improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True,visible=False, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.")
408
-
409
- with gr.Column():
410
- output_video = gr.Video(label="Generated Video", interactive=False)
411
- # gr.DeepLinkButton()
412
-
413
- with gr.Accordion("Advanced settings", open=False):
414
- mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False)
415
- negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
416
- with gr.Row():
417
- seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
418
- randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
419
- with gr.Row(visible=False):
420
- guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
421
- with gr.Row():
422
- height_input = gr.Slider(label="Height", value=512, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
423
- width_input = gr.Slider(label="Width", value=704, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
424
-
425
-
426
- # --- Event handlers for updating dimensions on upload ---
427
- def handle_image_upload_for_dims(image_filepath, current_h, current_w):
428
- if not image_filepath: # Image cleared or no image initially
429
- # Keep current slider values if image is cleared or no input
430
- return gr.update(value=current_h), gr.update(value=current_w)
431
- try:
432
- img = Image.open(image_filepath)
433
- orig_w, orig_h = img.size
434
- new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
435
- return gr.update(value=new_h), gr.update(value=new_w)
436
- except Exception as e:
437
- print(f"Error processing image for dimension update: {e}")
438
- # Keep current slider values on error
439
- return gr.update(value=current_h), gr.update(value=current_w)
440
-
441
- def handle_video_upload_for_dims(video_filepath, current_h, current_w):
442
- if not video_filepath: # Video cleared or no video initially
443
- return gr.update(value=current_h), gr.update(value=current_w)
444
- try:
445
- # Ensure video_filepath is a string for os.path.exists and imageio
446
- video_filepath_str = str(video_filepath)
447
- if not os.path.exists(video_filepath_str):
448
- print(f"Video file path does not exist for dimension update: {video_filepath_str}")
449
- return gr.update(value=current_h), gr.update(value=current_w)
450
-
451
- orig_w, orig_h = -1, -1
452
- with imageio.get_reader(video_filepath_str) as reader:
453
- meta = reader.get_meta_data()
454
- if 'size' in meta:
455
- orig_w, orig_h = meta['size']
456
- else:
457
- # Fallback: read first frame if 'size' not in metadata
458
- try:
459
- first_frame = reader.get_data(0)
460
- # Shape is (h, w, c) for frames
461
- orig_h, orig_w = first_frame.shape[0], first_frame.shape[1]
462
- except Exception as e_frame:
463
- print(f"Could not get video size from metadata or first frame: {e_frame}")
464
- return gr.update(value=current_h), gr.update(value=current_w)
465
-
466
- if orig_w == -1 or orig_h == -1: # If dimensions couldn't be determined
467
- print(f"Could not determine dimensions for video: {video_filepath_str}")
468
- return gr.update(value=current_h), gr.update(value=current_w)
469
-
470
- new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
471
- return gr.update(value=new_h), gr.update(value=new_w)
472
- except Exception as e:
473
- # Log type of video_filepath for debugging if it's not a path-like string
474
- print(f"Error processing video for dimension update: {e} (Path: {video_filepath}, Type: {type(video_filepath)})")
475
- return gr.update(value=current_h), gr.update(value=current_w)
476
-
477
-
478
- image_i2v.upload(
479
- fn=handle_image_upload_for_dims,
480
- inputs=[image_i2v, height_input, width_input],
481
- outputs=[height_input, width_input]
482
- )
483
- video_v2v.upload(
484
- fn=handle_video_upload_for_dims,
485
- inputs=[video_v2v, height_input, width_input],
486
- outputs=[height_input, width_input]
487
- )
488
-
489
- image_tab.select(
490
- fn=update_task_image,
491
- outputs=[mode]
492
- )
493
- text_tab.select(
494
- fn=update_task_text,
495
- outputs=[mode]
496
- )
497
-
498
- t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
499
- height_input, width_input, mode,
500
- duration_input, frames_to_use,
501
- seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
502
-
503
- i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
504
- height_input, width_input, mode,
505
- duration_input, frames_to_use,
506
- seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
507
-
508
- v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
509
- height_input, width_input, mode,
510
- duration_input, frames_to_use,
511
- seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
512
-
513
- t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video, seed_input], api_name="text_to_video")
514
- i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video, seed_input], api_name="image_to_video")
515
- v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video, seed_input], api_name="video_to_video")
516
-
517
- if __name__ == "__main__":
518
- if os.path.exists(models_dir) and os.path.isdir(models_dir):
519
- print(f"Model directory: {Path(models_dir).resolve()}")
520
-
521
- demo.queue().launch(debug=True, share=False, mcp_server=True)