Update video_service.py
Browse files- video_service.py +104 -101
video_service.py
CHANGED
|
@@ -17,6 +17,110 @@ import subprocess
|
|
| 17 |
|
| 18 |
# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def run_setup():
|
| 21 |
"""Executa o script setup.py para clonar as dependências necessárias."""
|
| 22 |
setup_script_path = "setup.py"
|
|
@@ -150,107 +254,6 @@ class VideoService:
|
|
| 150 |
except Exception:
|
| 151 |
pass
|
| 152 |
|
| 153 |
-
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
|
| 154 |
-
try:
|
| 155 |
-
import psutil
|
| 156 |
-
import pynvml as nvml
|
| 157 |
-
nvml.nvmlInit()
|
| 158 |
-
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
|
| 159 |
-
# Try v3, then fall back to the generic name if binding differs
|
| 160 |
-
try:
|
| 161 |
-
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
|
| 162 |
-
except Exception:
|
| 163 |
-
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
|
| 164 |
-
results = []
|
| 165 |
-
for p in procs:
|
| 166 |
-
pid = int(p.pid)
|
| 167 |
-
used_mb = None
|
| 168 |
-
try:
|
| 169 |
-
# NVML returns bytes; some bindings may use NVML_VALUE_NOT_AVAILABLE
|
| 170 |
-
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
|
| 171 |
-
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
|
| 172 |
-
except Exception:
|
| 173 |
-
used_mb = None
|
| 174 |
-
name = "unknown"
|
| 175 |
-
user = "unknown"
|
| 176 |
-
try:
|
| 177 |
-
pr = psutil.Process(pid)
|
| 178 |
-
name = pr.name()
|
| 179 |
-
user = pr.username()
|
| 180 |
-
except Exception:
|
| 181 |
-
pass
|
| 182 |
-
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
|
| 183 |
-
nvml.nvmlShutdown()
|
| 184 |
-
return results
|
| 185 |
-
except Exception:
|
| 186 |
-
return []
|
| 187 |
-
|
| 188 |
-
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
|
| 189 |
-
# CSV, no header, no units gives lines: "PID,process_name,used_memory"
|
| 190 |
-
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
|
| 191 |
-
try:
|
| 192 |
-
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
|
| 193 |
-
except Exception:
|
| 194 |
-
return []
|
| 195 |
-
results = []
|
| 196 |
-
for line in out.strip().splitlines():
|
| 197 |
-
parts = [p.strip() for p in line.split(",")]
|
| 198 |
-
if len(parts) >= 3:
|
| 199 |
-
try:
|
| 200 |
-
pid = int(parts[0])
|
| 201 |
-
name = parts[1]
|
| 202 |
-
used_mb = int(parts[2])
|
| 203 |
-
user = "unknown"
|
| 204 |
-
try:
|
| 205 |
-
import psutil
|
| 206 |
-
pr = psutil.Process(pid)
|
| 207 |
-
user = pr.username()
|
| 208 |
-
except Exception:
|
| 209 |
-
pass
|
| 210 |
-
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
|
| 211 |
-
except Exception:
|
| 212 |
-
continue
|
| 213 |
-
return results
|
| 214 |
-
|
| 215 |
-
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
|
| 216 |
-
if not processes:
|
| 217 |
-
return " - Processos ativos: (nenhum)\n"
|
| 218 |
-
# sort by used_mb desc, then pid
|
| 219 |
-
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
|
| 220 |
-
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
|
| 221 |
-
for p in processes:
|
| 222 |
-
star = "*" if p["pid"] == current_pid else " "
|
| 223 |
-
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
|
| 224 |
-
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
|
| 225 |
-
return "\n".join(lines) + "\n"
|
| 226 |
-
|
| 227 |
-
# Integração no método existente:
|
| 228 |
-
def _log_gpu_memory(self, stage_name: str):
|
| 229 |
-
import torch
|
| 230 |
-
if self.device != "cuda":
|
| 231 |
-
return
|
| 232 |
-
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
|
| 233 |
-
current_reserved_b = torch.cuda.memory_reserved(device_index)
|
| 234 |
-
current_reserved_mb = current_reserved_b / (1024 ** 2)
|
| 235 |
-
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
|
| 236 |
-
total_memory_mb = total_memory_b / (1024 ** 2)
|
| 237 |
-
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
|
| 238 |
-
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
|
| 239 |
-
|
| 240 |
-
# Coleta de processos: tenta NVML, depois fallback para nvidia-smi
|
| 241 |
-
processes = _query_gpu_processes_via_nvml(device_index)
|
| 242 |
-
if not processes:
|
| 243 |
-
processes = _query_gpu_processes_via_nvidiasmi(device_index)
|
| 244 |
-
|
| 245 |
-
print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} (cuda:{device_index}) ---")
|
| 246 |
-
print(f" - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB")
|
| 247 |
-
print(f" - Variação desde o último log: {delta_mb:+.2f} MB")
|
| 248 |
-
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
|
| 249 |
-
print(f" - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB")
|
| 250 |
-
# Imprime tabela de processos
|
| 251 |
-
print(_gpu_process_table(processes, os.getpid()), end="")
|
| 252 |
-
print("--------------------------------------------------\n")
|
| 253 |
-
self.last_memory_reserved_mb = current_reserved_mb
|
| 254 |
|
| 255 |
def _load_config(self):
|
| 256 |
config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
|
|
|
|
| 17 |
|
| 18 |
# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
|
| 19 |
|
| 20 |
+
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
|
| 21 |
+
try:
|
| 22 |
+
import psutil
|
| 23 |
+
import pynvml as nvml
|
| 24 |
+
nvml.nvmlInit()
|
| 25 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
|
| 26 |
+
# Try v3, then fall back to the generic name if binding differs
|
| 27 |
+
try:
|
| 28 |
+
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
|
| 29 |
+
except Exception:
|
| 30 |
+
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
|
| 31 |
+
results = []
|
| 32 |
+
for p in procs:
|
| 33 |
+
pid = int(p.pid)
|
| 34 |
+
used_mb = None
|
| 35 |
+
try:
|
| 36 |
+
# NVML returns bytes; some bindings may use NVML_VALUE_NOT_AVAILABLE
|
| 37 |
+
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
|
| 38 |
+
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
|
| 39 |
+
except Exception:
|
| 40 |
+
used_mb = None
|
| 41 |
+
name = "unknown"
|
| 42 |
+
user = "unknown"
|
| 43 |
+
try:
|
| 44 |
+
pr = psutil.Process(pid)
|
| 45 |
+
name = pr.name()
|
| 46 |
+
user = pr.username()
|
| 47 |
+
except Exception:
|
| 48 |
+
pass
|
| 49 |
+
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
|
| 50 |
+
nvml.nvmlShutdown()
|
| 51 |
+
return results
|
| 52 |
+
except Exception:
|
| 53 |
+
return []
|
| 54 |
+
|
| 55 |
+
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
|
| 56 |
+
# CSV, no header, no units gives lines: "PID,process_name,used_memory"
|
| 57 |
+
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
|
| 58 |
+
try:
|
| 59 |
+
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
|
| 60 |
+
except Exception:
|
| 61 |
+
return []
|
| 62 |
+
results = []
|
| 63 |
+
for line in out.strip().splitlines():
|
| 64 |
+
parts = [p.strip() for p in line.split(",")]
|
| 65 |
+
if len(parts) >= 3:
|
| 66 |
+
try:
|
| 67 |
+
pid = int(parts[0])
|
| 68 |
+
name = parts[1]
|
| 69 |
+
used_mb = int(parts[2])
|
| 70 |
+
user = "unknown"
|
| 71 |
+
try:
|
| 72 |
+
import psutil
|
| 73 |
+
pr = psutil.Process(pid)
|
| 74 |
+
user = pr.username()
|
| 75 |
+
except Exception:
|
| 76 |
+
pass
|
| 77 |
+
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
|
| 78 |
+
except Exception:
|
| 79 |
+
continue
|
| 80 |
+
return results
|
| 81 |
+
|
| 82 |
+
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
|
| 83 |
+
if not processes:
|
| 84 |
+
return " - Processos ativos: (nenhum)\n"
|
| 85 |
+
# sort by used_mb desc, then pid
|
| 86 |
+
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
|
| 87 |
+
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
|
| 88 |
+
for p in processes:
|
| 89 |
+
star = "*" if p["pid"] == current_pid else " "
|
| 90 |
+
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
|
| 91 |
+
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
|
| 92 |
+
return "\n".join(lines) + "\n"
|
| 93 |
+
|
| 94 |
+
# Integração no método existente:
|
| 95 |
+
def _log_gpu_memory(self, stage_name: str):
|
| 96 |
+
import torch
|
| 97 |
+
if self.device != "cuda":
|
| 98 |
+
return
|
| 99 |
+
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
|
| 100 |
+
current_reserved_b = torch.cuda.memory_reserved(device_index)
|
| 101 |
+
current_reserved_mb = current_reserved_b / (1024 ** 2)
|
| 102 |
+
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
|
| 103 |
+
total_memory_mb = total_memory_b / (1024 ** 2)
|
| 104 |
+
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
|
| 105 |
+
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
|
| 106 |
+
|
| 107 |
+
# Coleta de processos: tenta NVML, depois fallback para nvidia-smi
|
| 108 |
+
processes = _query_gpu_processes_via_nvml(device_index)
|
| 109 |
+
if not processes:
|
| 110 |
+
processes = _query_gpu_processes_via_nvidiasmi(device_index)
|
| 111 |
+
|
| 112 |
+
print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} (cuda:{device_index}) ---")
|
| 113 |
+
print(f" - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB")
|
| 114 |
+
print(f" - Variação desde o último log: {delta_mb:+.2f} MB")
|
| 115 |
+
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
|
| 116 |
+
print(f" - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB")
|
| 117 |
+
# Imprime tabela de processos
|
| 118 |
+
print(_gpu_process_table(processes, os.getpid()), end="")
|
| 119 |
+
print("--------------------------------------------------\n")
|
| 120 |
+
self.last_memory_reserved_mb = current_reserved_mb
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
def run_setup():
|
| 125 |
"""Executa o script setup.py para clonar as dependências necessárias."""
|
| 126 |
setup_script_path = "setup.py"
|
|
|
|
| 254 |
except Exception:
|
| 255 |
pass
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
def _load_config(self):
|
| 259 |
config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
|