Eueuiaa commited on
Commit
e578533
·
verified ·
1 Parent(s): 4082610

Update LTX-Video/ltx_video/pipelines/pipeline_ltx_video.py

Browse files
LTX-Video/ltx_video/pipelines/pipeline_ltx_video.py CHANGED
@@ -199,11 +199,10 @@ def retrieve_timesteps(
199
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
200
  num_inference_steps = len(timesteps)
201
 
202
-
203
- print(f"[ADUC DEBUG LTX *causal_video_autoencoder.py*]=======")
204
- print(f"skip_initial_inference_steps {skip_initial_inference_steps}")
205
- print(f"skip_final_inference_steps {skip_final_inference_steps}")
206
- # print(f"timesteps {timesteps}")
207
 
208
 
209
  return timesteps, num_inference_steps
@@ -900,11 +899,11 @@ class LTXVideoPipeline(DiffusionPipeline):
900
  returned where the first element is a list with the generated images
901
  """
902
 
903
- print(f"[1ADUC DEBUG LTX *causal_video_autoencoder.py*]=======")
904
- print(f"skip_initial_inference_steps {skip_initial_inference_steps}")
905
- print(f"skip_final_inference_steps {skip_final_inference_steps}")
906
- #print(f"latents {latents.shape}")
907
-
908
 
909
  if "mask_feature" in kwargs:
910
  deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
@@ -974,11 +973,11 @@ class LTXVideoPipeline(DiffusionPipeline):
974
  **retrieve_timesteps_kwargs,
975
  )
976
 
977
- print(f"[2ADUC DEBUG LTX *causal_video_autoencoder.py*]=======")
978
- print(f"skip_initial_inference_steps {skip_initial_inference_steps}")
979
- print(f"skip_final_inference_steps {skip_final_inference_steps}")
980
- #print(f"latents {latents.shape}")
981
-
982
  if self.allowed_inference_steps is not None:
983
  for timestep in [round(x, 4) for x in timesteps.tolist()]:
984
  assert (
@@ -1047,11 +1046,11 @@ class LTXVideoPipeline(DiffusionPipeline):
1047
  max_new_tokens=text_encoder_max_tokens,
1048
  )
1049
 
1050
- print(f"[4ADUC DEBUG LTX *causal_video_autoencoder.py*]=======")
1051
- print(f"skip_initial_inference_steps {skip_initial_inference_steps}")
1052
- print(f"skip_final_inference_steps {skip_final_inference_steps}")
1053
- #print(f"latents {latents.shape}")
1054
-
1055
  # 3. Encode input prompt
1056
  if self.text_encoder is not None:
1057
  self.text_encoder = self.text_encoder.to(self._execution_device)
@@ -1118,11 +1117,10 @@ class LTXVideoPipeline(DiffusionPipeline):
1118
  )
1119
 
1120
 
1121
- print(f"[5ADUC DEBUG LTX *causal_video_autoencoder.py*]=======")
1122
- print(f"skip_initial_inference_steps {skip_initial_inference_steps}")
1123
- print(f"skip_final_inference_steps {skip_final_inference_steps}")
1124
- print(f"latents {latents.shape}")
1125
-
1126
 
1127
  # Update the latents with the conditioning items and patchify them into (b, n, c)
1128
  latents, pixel_coords, conditioning_mask, num_cond_latents = (
@@ -1140,18 +1138,16 @@ class LTXVideoPipeline(DiffusionPipeline):
1140
 
1141
 
1142
 
1143
- print(f"[6ADUC DEBUG LTX *causal_video_autoencoder.py*]=======")
1144
- print(f"skip_initial_inference_steps {skip_initial_inference_steps}")
1145
- print(f"skip_final_inference_steps {skip_final_inference_steps}")
1146
- print(f"latents {latents.shape}")
1147
  # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1148
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1149
 
1150
 
1151
- print(f"[7ADUC DEBUG LTX *causal_video_autoencoder.py*]=======")
1152
- print(f"skip_initial_inference_steps {skip_initial_inference_steps}")
1153
- print(f"skip_final_inference_steps {skip_final_inference_steps}")
1154
- print(f"latents {latents.shape}")
 
1155
  # 7. Denoising loop
1156
  num_warmup_steps = max(
1157
  len(timesteps) - num_inference_steps * self.scheduler.order, 0
@@ -1344,11 +1340,11 @@ class LTXVideoPipeline(DiffusionPipeline):
1344
 
1345
 
1346
 
1347
- print(f"[8ADUC DEBUG LTX *causal_video_autoencoder.py*]=======")
1348
- print(f"skip_initial_inference_steps {skip_initial_inference_steps}")
1349
- print(f"skip_final_inference_steps {skip_final_inference_steps}")
1350
- print(f"latents {latents.shape}")
1351
-
1352
  if offload_to_cpu:
1353
  self.transformer = self.transformer.cpu()
1354
  if self._execution_device == "cuda":
 
199
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
200
  num_inference_steps = len(timesteps)
201
 
202
+ try:
203
+ print(f"[LTX]LATENTS {latents.shape}")
204
+ except Exception:
205
+ pass
 
206
 
207
 
208
  return timesteps, num_inference_steps
 
899
  returned where the first element is a list with the generated images
900
  """
901
 
902
+ try:
903
+ print(f"[LTX]LATENTS {latents.shape}")
904
+ except Exception:
905
+ pass
906
+
907
 
908
  if "mask_feature" in kwargs:
909
  deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
 
973
  **retrieve_timesteps_kwargs,
974
  )
975
 
976
+ try:
977
+ print(f"[LTX2]LATENTS {latents.shape}")
978
+ except Exception:
979
+ pass
980
+
981
  if self.allowed_inference_steps is not None:
982
  for timestep in [round(x, 4) for x in timesteps.tolist()]:
983
  assert (
 
1046
  max_new_tokens=text_encoder_max_tokens,
1047
  )
1048
 
1049
+ try:
1050
+ print(f"[LTX3]LATENTS {latents.shape}")
1051
+ except Exception:
1052
+ pass
1053
+
1054
  # 3. Encode input prompt
1055
  if self.text_encoder is not None:
1056
  self.text_encoder = self.text_encoder.to(self._execution_device)
 
1117
  )
1118
 
1119
 
1120
+ try:
1121
+ print(f"[LTX4]LATENTS {latents.shape}")
1122
+ except Exception:
1123
+ pass
 
1124
 
1125
  # Update the latents with the conditioning items and patchify them into (b, n, c)
1126
  latents, pixel_coords, conditioning_mask, num_cond_latents = (
 
1138
 
1139
 
1140
 
1141
+
 
 
 
1142
  # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1143
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1144
 
1145
 
1146
+ try:
1147
+ print(f"[LTX5]LATENTS {latents.shape}")
1148
+ except Exception:
1149
+ pass
1150
+
1151
  # 7. Denoising loop
1152
  num_warmup_steps = max(
1153
  len(timesteps) - num_inference_steps * self.scheduler.order, 0
 
1340
 
1341
 
1342
 
1343
+ try:
1344
+ print(f"[LTX6]LATENTS {latents.shape}")
1345
+ except Exception:
1346
+ pass
1347
+
1348
  if offload_to_cpu:
1349
  self.transformer = self.transformer.cpu()
1350
  if self._execution_device == "cuda":