Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import torch | |
| import math | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from typing import Tuple, List, Optional | |
| from transformers import LlamaModel, LlamaConfig, LlamaForCausalLM | |
| from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LLAMA_ATTENTION_CLASSES, LlamaMLP, LlamaRMSNorm | |
| from transformers.models.llama.modeling_llama import LlamaSdpaAttention, apply_rotary_pos_emb, repeat_kv | |
| from transformers import logging, Cache, DynamicCache, StaticCache | |
| from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast | |
| from generation_utils import NovaGenerationMixin | |
| logger = logging.get_logger(__name__) | |
| class NovaTokenizer(): | |
| def __init__(self, tokenizer): | |
| self.tokenizer = tokenizer | |
| self.labels = set([ | |
| tokenizer.encode(f'<label-{i}>')[-1] for i in range(1, 257) | |
| ]) | |
| def encode(self, input_text: str, output_text: str, char_types: str): | |
| assert len(input_text + output_text) > 0, "`input_text` + `output_text` should not be empty." | |
| assert len(input_text + output_text) == len(char_types), "`char_types` should be a string of `01` with the same length of `input_text` + `output_text`." | |
| # input | |
| input_text_lst = [] | |
| start = 0 | |
| for i in range(1, len(input_text)): | |
| if char_types[i] != char_types[i - 1]: | |
| input_text_lst.append([input_text[start: i], char_types[i - 1]]) | |
| start = i | |
| if input_text != '': | |
| input_text_lst.append([input_text[start: ], char_types[: len(input_text)][-1]]) | |
| # output | |
| output_text_lst = [] | |
| start = 0 | |
| for i in range(1, len(output_text)): | |
| if char_types[len(input_text) + i] != char_types[len(input_text) + i - 1]: | |
| output_text_lst.append([output_text[start: i], char_types[len(input_text) + i - 1]]) | |
| start = i | |
| if output_text != '': | |
| output_text_lst.append([output_text[start: ], char_types[-1]]) | |
| input_ids = [] | |
| output_ids = [] | |
| tokenized_text_lst = [] | |
| l = 0 | |
| for txt, ty in input_text_lst: | |
| # remove bos from Llama's tokenization | |
| txt_ids = self.tokenizer.encode(txt)[1: ] | |
| tokenized_text_lst.append([txt_ids, ty]) | |
| input_ids += txt_ids | |
| output_ids += [-100] * len(txt_ids) | |
| l += len(txt_ids) | |
| for txt, ty in output_text_lst: | |
| # remove bos from Llama's tokenization | |
| txt_ids = self.tokenizer.encode(txt)[1: ] | |
| tokenized_text_lst.append([txt_ids, ty]) | |
| input_ids += txt_ids | |
| output_ids += txt_ids | |
| l += len(txt_ids) | |
| input_ids = np.array(input_ids, dtype=np.int32) | |
| output_ids = np.array(output_ids, dtype=np.int32) | |
| attention_mask = np.zeros((l, l)) | |
| cur_len = 0 | |
| no_mask_idx = [] | |
| for text_ids, ty in tokenized_text_lst: | |
| input_ids[cur_len: cur_len + len(text_ids)] = text_ids | |
| if ty == "1": | |
| sub_text_ids_lst = [] | |
| start = 0 | |
| for i, e in enumerate(text_ids): | |
| if e in self.labels and i + 1 < len(text_ids) and text_ids[i + 1] == self.tokenizer.encode('\n')[1]: | |
| sub_text_ids_lst.append(text_ids[start: i + 1]) | |
| start = i + 1 | |
| if start < len(text_ids): | |
| sub_text_ids_lst.append(text_ids[start: ]) | |
| sub_cur_len = 0 | |
| for sub_text_ids in sub_text_ids_lst: | |
| f = np.ones((len(sub_text_ids), len(sub_text_ids))) | |
| # f.fill(0.9) | |
| attention_mask[cur_len + sub_cur_len: cur_len + sub_cur_len + len(sub_text_ids), | |
| cur_len + sub_cur_len: cur_len + sub_cur_len + len(sub_text_ids)] = \ | |
| np.tril(f) | |
| if cur_len + sub_cur_len - 1 >= 0: | |
| attention_mask[cur_len + sub_cur_len: cur_len + sub_cur_len + len(sub_text_ids), cur_len + sub_cur_len - 1] = 1 | |
| if len(no_mask_idx) > 0: | |
| attention_mask[cur_len + sub_cur_len + len(sub_text_ids) - 1, np.array(no_mask_idx)] = 1 | |
| no_mask_idx += [cur_len + sub_cur_len + len(sub_text_ids) - 1] | |
| sub_cur_len += len(sub_text_ids) | |
| elif ty == "0": | |
| attention_mask[cur_len: cur_len + len(text_ids), cur_len: cur_len + len(text_ids)] = np.tril( | |
| np.ones( | |
| (len(text_ids), len(text_ids)) | |
| ) | |
| ) | |
| if len(no_mask_idx) > 0: | |
| attention_mask[ | |
| cur_len: cur_len + len(text_ids), np.array(no_mask_idx) | |
| ] = 1 | |
| no_mask_idx += [idx for idx in range(cur_len, cur_len + len(text_ids))] | |
| cur_len += len(text_ids) | |
| return { | |
| 'input_ids': input_ids, 'labels': output_ids, 'nova_attention_mask': attention_mask.astype(bool), | |
| 'no_mask_idx': no_mask_idx | |
| } | |
| class NovaAttention(LlamaSdpaAttention): | |
| def forward_output_attentions( | |
| self, | |
| hidden_states, | |
| attention_mask, | |
| nova_attention_mask, | |
| position_ids, | |
| past_key_value, | |
| output_attentions, | |
| use_cache, | |
| cache_position, | |
| ): | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| past_key_value = getattr(self, "past_key_value", past_key_value) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| # sin and cos are specific to RoPE models; cache_position needed for the static cache | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| query_states_1, query_states_2 = torch.split(query_states, self.num_heads // 2, dim=1) | |
| key_states_1, key_states_2 = torch.split(key_states, self.num_heads // 2, dim=1) | |
| value_states_1, value_states_2 = torch.split(value_states, self.num_heads // 2, dim=1) | |
| attn_weights_1 = torch.matmul(query_states_1, key_states_1.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| attn_weights_2 = torch.matmul(query_states_2, key_states_2.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| # attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| if attention_mask is not None: # no matter the length, we just slice it | |
| causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| attn_weights_1 = attn_weights_1 + causal_mask | |
| attn_weights_2 = attn_weights_2 + nova_attention_mask | |
| attn_weights_1 = nn.functional.softmax(attn_weights_1, dim=-1, dtype=torch.float32).to(query_states_1.dtype) | |
| attn_weights_1 = nn.functional.dropout(attn_weights_1, p=self.attention_dropout, training=self.training) | |
| attn_output_1 = torch.matmul(attn_weights_1, value_states_1) | |
| attn_weights_2 = nn.functional.softmax(attn_weights_2, dim=-1, dtype=torch.float32).to(query_states_2.dtype) | |
| attn_weights_2 = nn.functional.dropout(attn_weights_2, p=self.attention_dropout, training=self.training) | |
| attn_output_2 = torch.matmul(attn_weights_2, value_states_2) | |
| attn_weights = torch.cat([attn_weights_1, attn_weights_2], dim=1) | |
| attn_output = torch.cat([attn_output_1, attn_output_2], dim=1) | |
| # upcast attention to fp32 | |
| # attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
| # attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
| # attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| nova_attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if output_attentions: | |
| return self.forward_output_attentions( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| nova_attention_mask=nova_attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| ) | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # [B, num, L, h] | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # [B, ?, L, h] | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) # [B, ?, L, h] | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| # In case static cache is used, it is an instance attribute. | |
| past_key_value = getattr(self, "past_key_value", past_key_value) | |
| if past_key_value is not None: | |
| # sin and cos are specific to RoPE models; cache_position needed for the static cache | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) # [B, num, L, h] | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| causal_mask = attention_mask | |
| if attention_mask is not None: | |
| causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | |
| if query_states.device.type == "cuda" and causal_mask is not None: | |
| query_states = query_states.contiguous() | |
| key_states = key_states.contiguous() | |
| value_states = value_states.contiguous() | |
| # Nova split attention | |
| # nova_h = self.config.nova_num_heads | |
| # query_states_1, query_states_2 = query_states[:, :-nova_h, :, :], query_states[:, -nova_h:, :, :] | |
| # key_states_1, key_states_2 = key_states[:, :-nova_h, :, :], key_states[:, -nova_h:, :, :] | |
| # value_states_1, value_states_2 = value_states[:, :-nova_h, :, :], value_states[:, -nova_h:, :, :] | |
| query_states_1, query_states_2 = torch.split(query_states, self.num_heads // 2, dim=1) | |
| key_states_1, key_states_2 = torch.split(key_states, self.num_heads // 2, dim=1) | |
| value_states_1, value_states_2 = torch.split(value_states, self.num_heads // 2, dim=1) | |
| # standard attention | |
| attn_output_1 = torch.nn.functional.scaled_dot_product_attention( | |
| query_states_1, | |
| key_states_1, | |
| value_states_1, | |
| attn_mask=causal_mask, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| is_causal=causal_mask is None and q_len > 1, | |
| ) | |
| # Nova attention | |
| attn_output_2 = torch.nn.functional.scaled_dot_product_attention( | |
| query_states_2, | |
| key_states_2, | |
| value_states_2, | |
| attn_mask=nova_attention_mask, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| is_causal=False, | |
| ) | |
| attn_output = torch.cat([attn_output_1, attn_output_2], dim=1) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, None, past_key_value | |
| class NovaDecoderLayer(LlamaDecoderLayer): | |
| def __init__(self, config: LlamaConfig, layer_idx: int): | |
| super().__init__(config, layer_idx) | |
| self.hidden_size = config.hidden_size | |
| self.self_attn = NovaAttention(config=config, layer_idx=layer_idx) | |
| self.mlp = LlamaMLP(config) | |
| self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| nova_attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| **kwargs, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| nova_attention_mask=nova_attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| **kwargs, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| class NovaModel(LlamaModel): | |
| def __init__(self, config: LlamaConfig): | |
| super().__init__(config) | |
| self.padding_idx = config.pad_token_id | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
| self.layers = nn.ModuleList( | |
| [NovaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
| ) | |
| self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| nova_attention_mask: Optional[torch.Tensor] = None, | |
| no_mask_idx: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ): | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if (input_ids is None) ^ (inputs_embeds is not None): | |
| raise ValueError( | |
| "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
| ) | |
| if self.gradient_checkpointing and self.training and use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | |
| ) | |
| use_cache = False | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| past_seen_tokens = 0 | |
| if use_cache: # kept for BC (cache positions) | |
| if not isinstance(past_key_values, StaticCache): | |
| past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
| past_seen_tokens = past_key_values.get_seq_length() | |
| if cache_position is None: | |
| if isinstance(past_key_values, StaticCache): | |
| raise ValueError("cache_position is a required argument when using StaticCache.") | |
| cache_position = torch.arange( | |
| past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
| ) | |
| if position_ids is None: | |
| position_ids = cache_position.unsqueeze(0) | |
| causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens) | |
| # apply the nova attention | |
| if nova_attention_mask is not None: | |
| bsz, L = inputs_embeds.size()[:2] | |
| nova_attention_mask = nova_attention_mask.unsqueeze(1).type(inputs_embeds.dtype) | |
| # nova_attention_mask = (nova_attention_mask - 1) * torch.finfo(inputs_embeds.dtype).max | |
| nova_attention_mask = (nova_attention_mask - 1) * 1.e32 | |
| nova_attention_mask = nova_attention_mask[:, :, -L:, :] | |
| # embed positions | |
| hidden_states = inputs_embeds | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| next_decoder_cache = None | |
| for decoder_layer in self.layers: | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| decoder_layer.__call__, | |
| hidden_states, | |
| causal_mask, | |
| nova_attention_mask, | |
| position_ids, | |
| past_key_values, | |
| output_attentions, | |
| use_cache, | |
| cache_position, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=causal_mask, | |
| nova_attention_mask=nova_attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_values, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| hidden_states = self.norm(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = None | |
| if use_cache: | |
| next_cache = ( | |
| next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache | |
| ) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| class NovaForCausalLM(LlamaForCausalLM, NovaGenerationMixin): | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.model = NovaModel(config) | |
| self.vocab_size = config.vocab_size | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| nova_attention_mask: Optional[torch.Tensor] = None, | |
| no_mask_idx: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ): | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| nova_attention_mask=nova_attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| cache_position=cache_position, | |
| ) | |
| hidden_states = outputs[0] | |
| if self.config.pretraining_tp > 1: | |
| lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) | |
| logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] | |
| logits = torch.cat(logits, dim=-1) | |
| else: | |
| logits = self.lm_head(hidden_states) | |
| logits = logits.float() | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = nn.CrossEntropyLoss() | |
| shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
| shift_labels = shift_labels.view(-1) | |
| # Enable model parallelism | |
| shift_labels = shift_labels.to(shift_logits.device) | |
| loss = loss_fct(shift_logits, shift_labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs | |
| ): | |
| # With static cache, the `past_key_values` is None | |
| # TODO joao: standardize interface for the different Cache classes and remove of this if | |
| # print('prepare input:', input_ids.size(), kwargs.get("nova_attention_mask").size(), kwargs.get("no_mask_idx").size()) | |
| has_static_cache = False | |
| if past_key_values is None: | |
| past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None) | |
| has_static_cache = past_key_values is not None | |
| past_length = 0 | |
| if past_key_values is not None: | |
| if isinstance(past_key_values, Cache): | |
| past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() | |
| max_cache_length = ( | |
| torch.tensor(past_key_values.get_max_length(), device=input_ids.device) | |
| if past_key_values.get_max_length() is not None | |
| else None | |
| ) | |
| cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) | |
| # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects | |
| else: | |
| cache_length = past_length = past_key_values[0][0].shape[2] | |
| max_cache_length = None | |
| # Keep only the unprocessed tokens: | |
| # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
| # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
| # input) | |
| if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
| input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
| # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
| # input_ids based on the past_length. | |
| elif past_length < input_ids.shape[1]: | |
| input_ids = input_ids[:, past_length:] | |
| # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
| # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
| if ( | |
| max_cache_length is not None | |
| and attention_mask is not None | |
| and cache_length + input_ids.shape[1] > max_cache_length | |
| ): | |
| attention_mask = attention_mask[:, -max_cache_length:] | |
| position_ids = kwargs.get("position_ids", None) | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| position_ids = position_ids[:, -input_ids.shape[1] :] | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and past_key_values is None: | |
| model_inputs = {"inputs_embeds": inputs_embeds} | |
| else: | |
| # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise | |
| # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 | |
| # TODO: use `next_tokens` directly instead. | |
| model_inputs = {"input_ids": input_ids.contiguous()} | |
| input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] | |
| if cache_position is None: | |
| cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) | |
| else: | |
| cache_position = cache_position[-input_length:] | |
| if has_static_cache: | |
| past_key_values = None | |
| model_inputs.update( | |
| { | |
| "position_ids": position_ids, | |
| "cache_position": cache_position, | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "attention_mask": attention_mask, | |
| "nova_attention_mask": kwargs.get("nova_attention_mask"), | |
| "no_mask_idx": kwargs.get("no_mask_idx") | |
| } | |
| ) | |
| return model_inputs | |