Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
2ab342b
1
Parent(s):
762a224
let's go field decoding
Browse files
app.py
CHANGED
|
@@ -15,10 +15,10 @@ huggingface_hub.login(token=hf_key)
|
|
| 15 |
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoderbase-3b")
|
| 17 |
vardecoder_model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
-
"ejschwartz/resym-vardecoder", torch_dtype=torch.bfloat16
|
| 19 |
).to("cuda")
|
| 20 |
fielddecoder_model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
-
"ejschwartz/resym-fielddecoder", torch_dtype=torch.bfloat16
|
| 22 |
).to("cuda")
|
| 23 |
|
| 24 |
gradio_client = Client("https://ejschwartz-resym-field-helper.hf.space/")
|
|
@@ -42,10 +42,12 @@ def field_prompt(code):
|
|
| 42 |
print(f"fields: {fields}")
|
| 43 |
|
| 44 |
prompt = f"```\n{code}\n```\nWhat are the variable name and type for the following memory accesses:{', '.join(fields)}?\n"
|
|
|
|
|
|
|
| 45 |
|
| 46 |
print(f"field prompt: {prompt}")
|
| 47 |
|
| 48 |
-
return prompt, field_helper_result
|
| 49 |
|
| 50 |
@spaces.GPU
|
| 51 |
def infer(code):
|
|
@@ -65,18 +67,18 @@ def infer(code):
|
|
| 65 |
|
| 66 |
varstring = ", ".join([f"`{v}`" for v in vars])
|
| 67 |
|
| 68 |
-
|
| 69 |
|
| 70 |
# ejs: Yeah, this var_name thing is really bizarre. But look at https://github.com/lt-asset/resym/blob/main/training_src/fielddecoder_inf.py
|
| 71 |
-
var_prompt = f"What are the original name and data types of variables {varstring}?\n```\n{code}\n```{
|
| 72 |
|
| 73 |
print(f"Prompt:\n{var_prompt}")
|
| 74 |
|
| 75 |
-
|
| 76 |
:, : 8192 - 1024
|
| 77 |
]
|
| 78 |
var_output = vardecoder_model.generate(
|
| 79 |
-
input_ids=
|
| 80 |
max_new_tokens=1024,
|
| 81 |
num_beams=4,
|
| 82 |
num_return_sequences=1,
|
|
@@ -86,32 +88,36 @@ def infer(code):
|
|
| 86 |
eos_token_id=0,
|
| 87 |
)[0]
|
| 88 |
var_output = tokenizer.decode(
|
| 89 |
-
var_output[
|
| 90 |
skip_special_tokens=True,
|
| 91 |
clean_up_tokenization_spaces=True,
|
| 92 |
)
|
| 93 |
|
| 94 |
-
field_prompt_result, field_helper_result = field_prompt(code)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
|
| 117 |
demo = gr.Interface(
|
|
@@ -121,7 +127,7 @@ demo = gr.Interface(
|
|
| 121 |
],
|
| 122 |
outputs=[
|
| 123 |
gr.Text(label="Var Decoder Output"),
|
| 124 |
-
|
| 125 |
gr.Text(label="Generated Variable List"),
|
| 126 |
],
|
| 127 |
description=frontmatter.load("README.md").content,
|
|
|
|
| 15 |
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoderbase-3b")
|
| 17 |
vardecoder_model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
"ejschwartz/resym-vardecoder", torch_dtype=torch.bfloat16
|
| 19 |
).to("cuda")
|
| 20 |
fielddecoder_model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
"ejschwartz/resym-fielddecoder", torch_dtype=torch.bfloat16
|
| 22 |
).to("cuda")
|
| 23 |
|
| 24 |
gradio_client = Client("https://ejschwartz-resym-field-helper.hf.space/")
|
|
|
|
| 42 |
print(f"fields: {fields}")
|
| 43 |
|
| 44 |
prompt = f"```\n{code}\n```\nWhat are the variable name and type for the following memory accesses:{', '.join(fields)}?\n"
|
| 45 |
+
if len(fields) > 0:
|
| 46 |
+
prompt += f"{fields[0]}:"
|
| 47 |
|
| 48 |
print(f"field prompt: {prompt}")
|
| 49 |
|
| 50 |
+
return prompt, fields, field_helper_result
|
| 51 |
|
| 52 |
@spaces.GPU
|
| 53 |
def infer(code):
|
|
|
|
| 67 |
|
| 68 |
varstring = ", ".join([f"`{v}`" for v in vars])
|
| 69 |
|
| 70 |
+
first_var = vars[0]
|
| 71 |
|
| 72 |
# ejs: Yeah, this var_name thing is really bizarre. But look at https://github.com/lt-asset/resym/blob/main/training_src/fielddecoder_inf.py
|
| 73 |
+
var_prompt = f"What are the original name and data types of variables {varstring}?\n```\n{code}\n```{first_var}"
|
| 74 |
|
| 75 |
print(f"Prompt:\n{var_prompt}")
|
| 76 |
|
| 77 |
+
var_input_ids = tokenizer.encode(var_prompt, return_tensors="pt").cuda()[
|
| 78 |
:, : 8192 - 1024
|
| 79 |
]
|
| 80 |
var_output = vardecoder_model.generate(
|
| 81 |
+
input_ids=var_input_ids,
|
| 82 |
max_new_tokens=1024,
|
| 83 |
num_beams=4,
|
| 84 |
num_return_sequences=1,
|
|
|
|
| 88 |
eos_token_id=0,
|
| 89 |
)[0]
|
| 90 |
var_output = tokenizer.decode(
|
| 91 |
+
var_output[var_input_ids.size(1) :],
|
| 92 |
skip_special_tokens=True,
|
| 93 |
clean_up_tokenization_spaces=True,
|
| 94 |
)
|
| 95 |
|
| 96 |
+
field_prompt_result, fields, field_helper_result = field_prompt(code)
|
| 97 |
+
field_input_ids = tokenizer.encode(field_prompt_result, return_tensors="pt").cuda()[
|
| 98 |
+
:, : 8192 - 1024
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
field_output = fielddecoder_model.generate(
|
| 102 |
+
input_ids=field_input_ids,
|
| 103 |
+
max_new_tokens=1024,
|
| 104 |
+
num_beams=4,
|
| 105 |
+
num_return_sequences=1,
|
| 106 |
+
do_sample=False,
|
| 107 |
+
early_stopping=False,
|
| 108 |
+
pad_token_id=0,
|
| 109 |
+
eos_token_id=0,
|
| 110 |
+
)[0]
|
| 111 |
+
field_output = tokenizer.decode(
|
| 112 |
+
field_output[var_input_ids.size(1) :],
|
| 113 |
+
skip_special_tokens=True,
|
| 114 |
+
clean_up_tokenization_spaces=True,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
var_output = first_var + ":" + var_output
|
| 118 |
+
if len(fields) > 0:
|
| 119 |
+
field_output = fields[0] + ":" + field_output
|
| 120 |
+
return var_output, field_output, varstring
|
| 121 |
|
| 122 |
|
| 123 |
demo = gr.Interface(
|
|
|
|
| 127 |
],
|
| 128 |
outputs=[
|
| 129 |
gr.Text(label="Var Decoder Output"),
|
| 130 |
+
gr.Text(label="Field Decoder Output"),
|
| 131 |
gr.Text(label="Generated Variable List"),
|
| 132 |
],
|
| 133 |
description=frontmatter.load("README.md").content,
|