Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
d11795a
1
Parent(s):
30626c1
More logging
Browse files
app.py
CHANGED
|
@@ -7,11 +7,25 @@ import spaces
|
|
| 7 |
import torch
|
| 8 |
import logging
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 10 |
|
| 11 |
-
# Set up
|
| 12 |
-
logging.basicConfig(
|
|
|
|
|
|
|
|
|
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
import huggingface_hub
|
| 16 |
|
| 17 |
import prep_decompiled
|
|
@@ -36,8 +50,14 @@ print(f"GPU memory after vardecoder:")
|
|
| 36 |
print(f"Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
| 37 |
print(f"Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
|
| 38 |
|
|
|
|
| 39 |
try:
|
| 40 |
logger.info("Loading fielddecoder model...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
fielddecoder_model = AutoModelForCausalLM.from_pretrained(
|
| 42 |
"ejschwartz/resym-fielddecoder",
|
| 43 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 7 |
import torch
|
| 8 |
import logging
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
+
from transformers.utils import logging as transformers_logging
|
| 11 |
|
| 12 |
+
# Set up comprehensive logging
|
| 13 |
+
logging.basicConfig(
|
| 14 |
+
level=logging.DEBUG,
|
| 15 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 16 |
+
)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
+
# Enable transformers logging
|
| 20 |
+
transformers_logging.set_verbosity_debug()
|
| 21 |
+
transformers_logging.enable_default_handler()
|
| 22 |
+
transformers_logging.enable_explicit_format()
|
| 23 |
+
|
| 24 |
+
# Enable accelerate and torch logging
|
| 25 |
+
logging.getLogger("accelerate").setLevel(logging.DEBUG)
|
| 26 |
+
logging.getLogger("torch").setLevel(logging.DEBUG)
|
| 27 |
+
logging.getLogger("transformers").setLevel(logging.DEBUG)
|
| 28 |
+
|
| 29 |
import huggingface_hub
|
| 30 |
|
| 31 |
import prep_decompiled
|
|
|
|
| 50 |
print(f"Allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
| 51 |
print(f"Reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
|
| 52 |
|
| 53 |
+
# Add more detailed debugging before loading the second model
|
| 54 |
try:
|
| 55 |
logger.info("Loading fielddecoder model...")
|
| 56 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 57 |
+
print(f"CUDA device count: {torch.cuda.device_count()}")
|
| 58 |
+
print(f"Current device: {torch.cuda.current_device()}")
|
| 59 |
+
print(f"Device name: {torch.cuda.get_device_name()}")
|
| 60 |
+
|
| 61 |
fielddecoder_model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
"ejschwartz/resym-fielddecoder",
|
| 63 |
torch_dtype=torch.bfloat16,
|