Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Commit 
							
							·
						
						32e89fe
	
1
								Parent(s):
							
							4bd749c
								
Initial commit
Browse files- .github/FUNDING.yml +3 -0
- .gitignore +11 -0
- LICENSE +201 -0
- README.md +4 -4
- app.py +389 -0
- examples/1.jpg +0 -0
- examples/2.jpg +0 -0
- examples/3.jpg +0 -0
- examples/4.jpg +0 -0
- examples/5.jpg +0 -0
- pipeline/mod_controlnet_tile_sr_sdxl.py +1845 -0
- pipeline/util.py +328 -0
- requirements.txt +11 -0
    	
        .github/FUNDING.yml
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # These are supported funding model platforms
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            ko_fi: elismasilva
         | 
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,11 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            __pycache__/
         | 
| 2 | 
            +
            *.py[cod]
         | 
| 3 | 
            +
            mod_tests/
         | 
| 4 | 
            +
            /.vs
         | 
| 5 | 
            +
            .vscode/
         | 
| 6 | 
            +
            .idea/
         | 
| 7 | 
            +
            venv/
         | 
| 8 | 
            +
            .venv/
         | 
| 9 | 
            +
            *.log
         | 
| 10 | 
            +
            .DS_Store
         | 
| 11 | 
            +
            .gradio
         | 
    	
        LICENSE
    ADDED
    
    | @@ -0,0 +1,201 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
                                             Apache License
         | 
| 2 | 
            +
                                       Version 2.0, January 2004
         | 
| 3 | 
            +
                                    http://www.apache.org/licenses/
         | 
| 4 | 
            +
             | 
| 5 | 
            +
               TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
         | 
| 6 | 
            +
             | 
| 7 | 
            +
               1. Definitions.
         | 
| 8 | 
            +
             | 
| 9 | 
            +
                  "License" shall mean the terms and conditions for use, reproduction,
         | 
| 10 | 
            +
                  and distribution as defined by Sections 1 through 9 of this document.
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                  "Licensor" shall mean the copyright owner or entity authorized by
         | 
| 13 | 
            +
                  the copyright owner that is granting the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                  "Legal Entity" shall mean the union of the acting entity and all
         | 
| 16 | 
            +
                  other entities that control, are controlled by, or are under common
         | 
| 17 | 
            +
                  control with that entity. For the purposes of this definition,
         | 
| 18 | 
            +
                  "control" means (i) the power, direct or indirect, to cause the
         | 
| 19 | 
            +
                  direction or management of such entity, whether by contract or
         | 
| 20 | 
            +
                  otherwise, or (ii) ownership of fifty percent (50%) or more of the
         | 
| 21 | 
            +
                  outstanding shares, or (iii) beneficial ownership of such entity.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                  "You" (or "Your") shall mean an individual or Legal Entity
         | 
| 24 | 
            +
                  exercising permissions granted by this License.
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                  "Source" form shall mean the preferred form for making modifications,
         | 
| 27 | 
            +
                  including but not limited to software source code, documentation
         | 
| 28 | 
            +
                  source, and configuration files.
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                  "Object" form shall mean any form resulting from mechanical
         | 
| 31 | 
            +
                  transformation or translation of a Source form, including but
         | 
| 32 | 
            +
                  not limited to compiled object code, generated documentation,
         | 
| 33 | 
            +
                  and conversions to other media types.
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                  "Work" shall mean the work of authorship, whether in Source or
         | 
| 36 | 
            +
                  Object form, made available under the License, as indicated by a
         | 
| 37 | 
            +
                  copyright notice that is included in or attached to the work
         | 
| 38 | 
            +
                  (an example is provided in the Appendix below).
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                  "Derivative Works" shall mean any work, whether in Source or Object
         | 
| 41 | 
            +
                  form, that is based on (or derived from) the Work and for which the
         | 
| 42 | 
            +
                  editorial revisions, annotations, elaborations, or other modifications
         | 
| 43 | 
            +
                  represent, as a whole, an original work of authorship. For the purposes
         | 
| 44 | 
            +
                  of this License, Derivative Works shall not include works that remain
         | 
| 45 | 
            +
                  separable from, or merely link (or bind by name) to the interfaces of,
         | 
| 46 | 
            +
                  the Work and Derivative Works thereof.
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                  "Contribution" shall mean any work of authorship, including
         | 
| 49 | 
            +
                  the original version of the Work and any modifications or additions
         | 
| 50 | 
            +
                  to that Work or Derivative Works thereof, that is intentionally
         | 
| 51 | 
            +
                  submitted to Licensor for inclusion in the Work by the copyright owner
         | 
| 52 | 
            +
                  or by an individual or Legal Entity authorized to submit on behalf of
         | 
| 53 | 
            +
                  the copyright owner. For the purposes of this definition, "submitted"
         | 
| 54 | 
            +
                  means any form of electronic, verbal, or written communication sent
         | 
| 55 | 
            +
                  to the Licensor or its representatives, including but not limited to
         | 
| 56 | 
            +
                  communication on electronic mailing lists, source code control systems,
         | 
| 57 | 
            +
                  and issue tracking systems that are managed by, or on behalf of, the
         | 
| 58 | 
            +
                  Licensor for the purpose of discussing and improving the Work, but
         | 
| 59 | 
            +
                  excluding communication that is conspicuously marked or otherwise
         | 
| 60 | 
            +
                  designated in writing by the copyright owner as "Not a Contribution."
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                  "Contributor" shall mean Licensor and any individual or Legal Entity
         | 
| 63 | 
            +
                  on behalf of whom a Contribution has been received by Licensor and
         | 
| 64 | 
            +
                  subsequently incorporated within the Work.
         | 
| 65 | 
            +
             | 
| 66 | 
            +
               2. Grant of Copyright License. Subject to the terms and conditions of
         | 
| 67 | 
            +
                  this License, each Contributor hereby grants to You a perpetual,
         | 
| 68 | 
            +
                  worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         | 
| 69 | 
            +
                  copyright license to reproduce, prepare Derivative Works of,
         | 
| 70 | 
            +
                  publicly display, publicly perform, sublicense, and distribute the
         | 
| 71 | 
            +
                  Work and such Derivative Works in Source or Object form.
         | 
| 72 | 
            +
             | 
| 73 | 
            +
               3. Grant of Patent License. Subject to the terms and conditions of
         | 
| 74 | 
            +
                  this License, each Contributor hereby grants to You a perpetual,
         | 
| 75 | 
            +
                  worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         | 
| 76 | 
            +
                  (except as stated in this section) patent license to make, have made,
         | 
| 77 | 
            +
                  use, offer to sell, sell, import, and otherwise transfer the Work,
         | 
| 78 | 
            +
                  where such license applies only to those patent claims licensable
         | 
| 79 | 
            +
                  by such Contributor that are necessarily infringed by their
         | 
| 80 | 
            +
                  Contribution(s) alone or by combination of their Contribution(s)
         | 
| 81 | 
            +
                  with the Work to which such Contribution(s) was submitted. If You
         | 
| 82 | 
            +
                  institute patent litigation against any entity (including a
         | 
| 83 | 
            +
                  cross-claim or counterclaim in a lawsuit) alleging that the Work
         | 
| 84 | 
            +
                  or a Contribution incorporated within the Work constitutes direct
         | 
| 85 | 
            +
                  or contributory patent infringement, then any patent licenses
         | 
| 86 | 
            +
                  granted to You under this License for that Work shall terminate
         | 
| 87 | 
            +
                  as of the date such litigation is filed.
         | 
| 88 | 
            +
             | 
| 89 | 
            +
               4. Redistribution. You may reproduce and distribute copies of the
         | 
| 90 | 
            +
                  Work or Derivative Works thereof in any medium, with or without
         | 
| 91 | 
            +
                  modifications, and in Source or Object form, provided that You
         | 
| 92 | 
            +
                  meet the following conditions:
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                  (a) You must give any other recipients of the Work or
         | 
| 95 | 
            +
                      Derivative Works a copy of this License; and
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                  (b) You must cause any modified files to carry prominent notices
         | 
| 98 | 
            +
                      stating that You changed the files; and
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                  (c) You must retain, in the Source form of any Derivative Works
         | 
| 101 | 
            +
                      that You distribute, all copyright, patent, trademark, and
         | 
| 102 | 
            +
                      attribution notices from the Source form of the Work,
         | 
| 103 | 
            +
                      excluding those notices that do not pertain to any part of
         | 
| 104 | 
            +
                      the Derivative Works; and
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                  (d) If the Work includes a "NOTICE" text file as part of its
         | 
| 107 | 
            +
                      distribution, then any Derivative Works that You distribute must
         | 
| 108 | 
            +
                      include a readable copy of the attribution notices contained
         | 
| 109 | 
            +
                      within such NOTICE file, excluding those notices that do not
         | 
| 110 | 
            +
                      pertain to any part of the Derivative Works, in at least one
         | 
| 111 | 
            +
                      of the following places: within a NOTICE text file distributed
         | 
| 112 | 
            +
                      as part of the Derivative Works; within the Source form or
         | 
| 113 | 
            +
                      documentation, if provided along with the Derivative Works; or,
         | 
| 114 | 
            +
                      within a display generated by the Derivative Works, if and
         | 
| 115 | 
            +
                      wherever such third-party notices normally appear. The contents
         | 
| 116 | 
            +
                      of the NOTICE file are for informational purposes only and
         | 
| 117 | 
            +
                      do not modify the License. You may add Your own attribution
         | 
| 118 | 
            +
                      notices within Derivative Works that You distribute, alongside
         | 
| 119 | 
            +
                      or as an addendum to the NOTICE text from the Work, provided
         | 
| 120 | 
            +
                      that such additional attribution notices cannot be construed
         | 
| 121 | 
            +
                      as modifying the License.
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                  You may add Your own copyright statement to Your modifications and
         | 
| 124 | 
            +
                  may provide additional or different license terms and conditions
         | 
| 125 | 
            +
                  for use, reproduction, or distribution of Your modifications, or
         | 
| 126 | 
            +
                  for any such Derivative Works as a whole, provided Your use,
         | 
| 127 | 
            +
                  reproduction, and distribution of the Work otherwise complies with
         | 
| 128 | 
            +
                  the conditions stated in this License.
         | 
| 129 | 
            +
             | 
| 130 | 
            +
               5. Submission of Contributions. Unless You explicitly state otherwise,
         | 
| 131 | 
            +
                  any Contribution intentionally submitted for inclusion in the Work
         | 
| 132 | 
            +
                  by You to the Licensor shall be under the terms and conditions of
         | 
| 133 | 
            +
                  this License, without any additional terms or conditions.
         | 
| 134 | 
            +
                  Notwithstanding the above, nothing herein shall supersede or modify
         | 
| 135 | 
            +
                  the terms of any separate license agreement you may have executed
         | 
| 136 | 
            +
                  with Licensor regarding such Contributions.
         | 
| 137 | 
            +
             | 
| 138 | 
            +
               6. Trademarks. This License does not grant permission to use the trade
         | 
| 139 | 
            +
                  names, trademarks, service marks, or product names of the Licensor,
         | 
| 140 | 
            +
                  except as required for reasonable and customary use in describing the
         | 
| 141 | 
            +
                  origin of the Work and reproducing the content of the NOTICE file.
         | 
| 142 | 
            +
             | 
| 143 | 
            +
               7. Disclaimer of Warranty. Unless required by applicable law or
         | 
| 144 | 
            +
                  agreed to in writing, Licensor provides the Work (and each
         | 
| 145 | 
            +
                  Contributor provides its Contributions) on an "AS IS" BASIS,
         | 
| 146 | 
            +
                  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
         | 
| 147 | 
            +
                  implied, including, without limitation, any warranties or conditions
         | 
| 148 | 
            +
                  of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
         | 
| 149 | 
            +
                  PARTICULAR PURPOSE. You are solely responsible for determining the
         | 
| 150 | 
            +
                  appropriateness of using or redistributing the Work and assume any
         | 
| 151 | 
            +
                  risks associated with Your exercise of permissions under this License.
         | 
| 152 | 
            +
             | 
| 153 | 
            +
               8. Limitation of Liability. In no event and under no legal theory,
         | 
| 154 | 
            +
                  whether in tort (including negligence), contract, or otherwise,
         | 
| 155 | 
            +
                  unless required by applicable law (such as deliberate and grossly
         | 
| 156 | 
            +
                  negligent acts) or agreed to in writing, shall any Contributor be
         | 
| 157 | 
            +
                  liable to You for damages, including any direct, indirect, special,
         | 
| 158 | 
            +
                  incidental, or consequential damages of any character arising as a
         | 
| 159 | 
            +
                  result of this License or out of the use or inability to use the
         | 
| 160 | 
            +
                  Work (including but not limited to damages for loss of goodwill,
         | 
| 161 | 
            +
                  work stoppage, computer failure or malfunction, or any and all
         | 
| 162 | 
            +
                  other commercial damages or losses), even if such Contributor
         | 
| 163 | 
            +
                  has been advised of the possibility of such damages.
         | 
| 164 | 
            +
             | 
| 165 | 
            +
               9. Accepting Warranty or Additional Liability. While redistributing
         | 
| 166 | 
            +
                  the Work or Derivative Works thereof, You may choose to offer,
         | 
| 167 | 
            +
                  and charge a fee for, acceptance of support, warranty, indemnity,
         | 
| 168 | 
            +
                  or other liability obligations and/or rights consistent with this
         | 
| 169 | 
            +
                  License. However, in accepting such obligations, You may act only
         | 
| 170 | 
            +
                  on Your own behalf and on Your sole responsibility, not on behalf
         | 
| 171 | 
            +
                  of any other Contributor, and only if You agree to indemnify,
         | 
| 172 | 
            +
                  defend, and hold each Contributor harmless for any liability
         | 
| 173 | 
            +
                  incurred by, or claims asserted against, such Contributor by reason
         | 
| 174 | 
            +
                  of your accepting any such warranty or additional liability.
         | 
| 175 | 
            +
             | 
| 176 | 
            +
               END OF TERMS AND CONDITIONS
         | 
| 177 | 
            +
             | 
| 178 | 
            +
               APPENDIX: How to apply the Apache License to your work.
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                  To apply the Apache License to your work, attach the following
         | 
| 181 | 
            +
                  boilerplate notice, with the fields enclosed by brackets "[]"
         | 
| 182 | 
            +
                  replaced with your own identifying information. (Don't include
         | 
| 183 | 
            +
                  the brackets!)  The text should be enclosed in the appropriate
         | 
| 184 | 
            +
                  comment syntax for the file format. We also recommend that a
         | 
| 185 | 
            +
                  file or class name and description of purpose be included on the
         | 
| 186 | 
            +
                  same "printed page" as the copyright notice for easier
         | 
| 187 | 
            +
                  identification within third-party archives.
         | 
| 188 | 
            +
             | 
| 189 | 
            +
               Copyright [yyyy] [name of copyright owner]
         | 
| 190 | 
            +
             | 
| 191 | 
            +
               Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 192 | 
            +
               you may not use this file except in compliance with the License.
         | 
| 193 | 
            +
               You may obtain a copy of the License at
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                   http://www.apache.org/licenses/LICENSE-2.0
         | 
| 196 | 
            +
             | 
| 197 | 
            +
               Unless required by applicable law or agreed to in writing, software
         | 
| 198 | 
            +
               distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 199 | 
            +
               WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 200 | 
            +
               See the License for the specific language governing permissions and
         | 
| 201 | 
            +
               limitations under the License.
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,14 +1,14 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
            -
            title: Mod  | 
| 3 | 
            -
            emoji:  | 
| 4 | 
             
            colorFrom: purple
         | 
| 5 | 
             
            colorTo: yellow
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            -
            sdk_version: 5. | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
             
            license: apache-2.0
         | 
| 11 | 
            -
            short_description:  | 
| 12 | 
             
            ---
         | 
| 13 |  | 
| 14 | 
             
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            title: Mod ControlNet Tile Upscaler SDXL
         | 
| 3 | 
            +
            emoji: 🚀
         | 
| 4 | 
             
            colorFrom: purple
         | 
| 5 | 
             
            colorTo: yellow
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 5.15.0
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
             
            license: apache-2.0
         | 
| 11 | 
            +
            short_description: Mixture of Diffusers and ControlNet Tile Upscaler for SDXL
         | 
| 12 | 
             
            ---
         | 
| 13 |  | 
| 14 | 
             
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,389 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import spaces
         | 
| 3 | 
            +
            from diffusers import ControlNetUnionModel, AutoencoderKL, UNet2DConditionModel
         | 
| 4 | 
            +
            import gradio as gr
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            from pipeline.mod_controlnet_tile_sr_sdxl import StableDiffusionXLControlNetTileSRPipeline
         | 
| 7 | 
            +
            from pipeline.util import (
         | 
| 8 | 
            +
                SAMPLERS,
         | 
| 9 | 
            +
                Platinum,
         | 
| 10 | 
            +
                calculate_overlap,
         | 
| 11 | 
            +
                create_hdr_effect,
         | 
| 12 | 
            +
                progressive_upscale,
         | 
| 13 | 
            +
                quantize_8bit,
         | 
| 14 | 
            +
                select_scheduler,
         | 
| 15 | 
            +
            )
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            device = "cuda"
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            # Initialize the models and pipeline
         | 
| 20 | 
            +
            controlnet = ControlNetUnionModel.from_pretrained(
         | 
| 21 | 
            +
                "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
         | 
| 22 | 
            +
            ).to(device=device)
         | 
| 23 | 
            +
            vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            model_id = "SG161222/RealVisXL_V5.0"
         | 
| 26 | 
            +
            pipe = StableDiffusionXLControlNetTileSRPipeline.from_pretrained(
         | 
| 27 | 
            +
                model_id, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
         | 
| 28 | 
            +
            ).to(device)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)
         | 
| 31 | 
            +
            quantize_8bit(unet)  # << Enable this if you have limited VRAM
         | 
| 32 | 
            +
            pipe.unet = unet
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            pipe.enable_model_cpu_offload()  # << Enable this if you have limited VRAM
         | 
| 35 | 
            +
            pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
         | 
| 36 | 
            +
            pipe.enable_vae_slicing() # << Enable this if you have limited VRAM
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            # region functions
         | 
| 39 | 
            +
            @spaces.GPU
         | 
| 40 | 
            +
            def predict(
         | 
| 41 | 
            +
                image,
         | 
| 42 | 
            +
                prompt,
         | 
| 43 | 
            +
                negative_prompt,
         | 
| 44 | 
            +
                resolution,
         | 
| 45 | 
            +
                hdr,
         | 
| 46 | 
            +
                num_inference_steps,
         | 
| 47 | 
            +
                denoising_strenght,
         | 
| 48 | 
            +
                controlnet_strength,
         | 
| 49 | 
            +
                tile_gaussian_sigma,
         | 
| 50 | 
            +
                scheduler,
         | 
| 51 | 
            +
                guidance_scale,
         | 
| 52 | 
            +
                max_tile_size,
         | 
| 53 | 
            +
                tile_weighting_method,
         | 
| 54 | 
            +
                progress=gr.Progress(track_tqdm=True),
         | 
| 55 | 
            +
            ):
         | 
| 56 | 
            +
                global pipe
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                # Set selected scheduler
         | 
| 59 | 
            +
                print(f"Using scheduler: {scheduler}...")
         | 
| 60 | 
            +
                pipe.scheduler = select_scheduler(pipe, scheduler)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                # Get current image size
         | 
| 63 | 
            +
                original_height = image.height
         | 
| 64 | 
            +
                original_width = image.width
         | 
| 65 | 
            +
                print(f"Current resolution: H:{original_height} x W:{original_width}")
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                # Pre-upscale image for tiling
         | 
| 68 | 
            +
                control_image = progressive_upscale(image, resolution)
         | 
| 69 | 
            +
                control_image = create_hdr_effect(control_image, hdr)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                # Update target height and width
         | 
| 72 | 
            +
                target_height = control_image.height
         | 
| 73 | 
            +
                target_width = control_image.width
         | 
| 74 | 
            +
                print(f"Target resolution: H:{target_height} x W:{target_width}")
         | 
| 75 | 
            +
                print(f"Applied HDR effect: {True if hdr > 0 else False}")
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                # Calculate overlap size
         | 
| 78 | 
            +
                normal_tile_overlap, border_tile_overlap = calculate_overlap(target_width, target_height)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                # Image generation
         | 
| 81 | 
            +
                print("Diffusion kicking in... almost done, coffee's on you!")
         | 
| 82 | 
            +
                image = pipe(
         | 
| 83 | 
            +
                    image=control_image,
         | 
| 84 | 
            +
                    control_image=image,
         | 
| 85 | 
            +
                    control_mode=[6],
         | 
| 86 | 
            +
                    controlnet_conditioning_scale=float(controlnet_strength),
         | 
| 87 | 
            +
                    prompt=prompt,
         | 
| 88 | 
            +
                    negative_prompt=negative_prompt,
         | 
| 89 | 
            +
                    normal_tile_overlap=normal_tile_overlap,
         | 
| 90 | 
            +
                    border_tile_overlap=border_tile_overlap,
         | 
| 91 | 
            +
                    height=target_height,
         | 
| 92 | 
            +
                    width=target_width,
         | 
| 93 | 
            +
                    original_size=(original_width, original_height),
         | 
| 94 | 
            +
                    target_size=(target_width, target_height),
         | 
| 95 | 
            +
                    guidance_scale=guidance_scale,        
         | 
| 96 | 
            +
                    strength=float(denoising_strenght),
         | 
| 97 | 
            +
                    tile_weighting_method=tile_weighting_method,
         | 
| 98 | 
            +
                    max_tile_size=max_tile_size,
         | 
| 99 | 
            +
                    tile_gaussian_sigma=float(tile_gaussian_sigma),
         | 
| 100 | 
            +
                    num_inference_steps=num_inference_steps,
         | 
| 101 | 
            +
                )["images"][0]
         | 
| 102 | 
            +
                image.save("result.png")
         | 
| 103 | 
            +
                return image
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            def clear_result():
         | 
| 107 | 
            +
                return gr.update(value=None)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            def set_maximum_resolution(max_tile_size, current_value):
         | 
| 110 | 
            +
                max_scale = 8  # <- you can try increase it to 12x, 16x if you wish!
         | 
| 111 | 
            +
                maximum_value = max_tile_size * max_scale
         | 
| 112 | 
            +
                if current_value > maximum_value:
         | 
| 113 | 
            +
                    return gr.update(maximum=maximum_value, value=maximum_value)
         | 
| 114 | 
            +
                return gr.update(maximum=maximum_value)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
            def select_tile_weighting_method(tile_weighting_method):
         | 
| 117 | 
            +
                return gr.update(visible=True if tile_weighting_method=="Gaussian" else False)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            # endregion
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            css = """
         | 
| 122 | 
            +
            body {
         | 
| 123 | 
            +
                background: linear-gradient(135deg, #667eea, #764ba2);
         | 
| 124 | 
            +
                font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
         | 
| 125 | 
            +
                color: #333;
         | 
| 126 | 
            +
                margin: 0;
         | 
| 127 | 
            +
                padding: 0;
         | 
| 128 | 
            +
            }
         | 
| 129 | 
            +
            .gradio-container {
         | 
| 130 | 
            +
                background: rgba(255, 255, 255, 0.95);
         | 
| 131 | 
            +
                border-radius: 15px;
         | 
| 132 | 
            +
                padding: 30px 40px;
         | 
| 133 | 
            +
                box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
         | 
| 134 | 
            +
                margin: 40px 340px;
         | 
| 135 | 
            +
                /*max-width: 1200px;*/
         | 
| 136 | 
            +
            }
         | 
| 137 | 
            +
            .gradio-container h1 {
         | 
| 138 | 
            +
                color: #333;
         | 
| 139 | 
            +
                text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
         | 
| 140 | 
            +
            }
         | 
| 141 | 
            +
            .fillable {
         | 
| 142 | 
            +
                width: 95% !important;
         | 
| 143 | 
            +
                max-width: unset !important;
         | 
| 144 | 
            +
            }
         | 
| 145 | 
            +
            #examples_container {
         | 
| 146 | 
            +
                margin: auto;
         | 
| 147 | 
            +
                width: 90%;
         | 
| 148 | 
            +
            }
         | 
| 149 | 
            +
            #examples_row {
         | 
| 150 | 
            +
                justify-content: center;
         | 
| 151 | 
            +
            }
         | 
| 152 | 
            +
            #tips_row{    
         | 
| 153 | 
            +
                padding-left: 20px;
         | 
| 154 | 
            +
            }
         | 
| 155 | 
            +
            .sidebar {
         | 
| 156 | 
            +
                background: rgba(255, 255, 255, 0.98);
         | 
| 157 | 
            +
                border-radius: 10px;
         | 
| 158 | 
            +
                padding: 10px;
         | 
| 159 | 
            +
                box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
         | 
| 160 | 
            +
            }
         | 
| 161 | 
            +
            .sidebar .toggle-button {
         | 
| 162 | 
            +
                background: linear-gradient(90deg, #7367f0, #9c93f4);
         | 
| 163 | 
            +
                border: none;
         | 
| 164 | 
            +
                color: #fff;
         | 
| 165 | 
            +
                padding: 12px 24px;
         | 
| 166 | 
            +
                text-transform: uppercase;
         | 
| 167 | 
            +
                font-weight: bold;
         | 
| 168 | 
            +
                letter-spacing: 1px;
         | 
| 169 | 
            +
                border-radius: 5px;
         | 
| 170 | 
            +
                cursor: pointer;
         | 
| 171 | 
            +
                transition: transform 0.2s ease-in-out;
         | 
| 172 | 
            +
            }
         | 
| 173 | 
            +
            .toggle-button:hover {
         | 
| 174 | 
            +
                transform: scale(1.05);
         | 
| 175 | 
            +
            }
         | 
| 176 | 
            +
            """
         | 
| 177 | 
            +
            title = """<h1 align="center">MoD ControlNet Tile Upscaler for SDXL🤗</h1>
         | 
| 178 | 
            +
                       <div style="display: flex; flex-direction: column; justify-content: center; align-items: center; text-align: center; overflow:hidden;">
         | 
| 179 | 
            +
                            <span>This project implements the <a href="https://arxiv.org/pdf/2408.06072">📜 MoD (Mixture-of-Diffusers)</a> tiled diffusion technique and combines it with SDXL's ControlNet Tile process.</span>
         | 
| 180 | 
            +
                            <span>💻 <b><a href="https://github.com/DEVAIEXP/mod-control-tile-upscaler-sdxl">GitHub Code</a></b>
         | 
| 181 | 
            +
                            <span>🚀 <b>Controlnet Union Power!</b> Check out the model: <a href="https://huggingface.co/xinsir/controlnet-union-sdxl-1.0">Controlnet Union</a></span>
         | 
| 182 | 
            +
                            <span>🎨 <b>RealVisXL V5.0 for Stunning Visuals!</b> Explore it here: <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">RealVisXL</a></span>
         | 
| 183 | 
            +
                       </div>
         | 
| 184 | 
            +
                       """
         | 
| 185 | 
            +
             | 
| 186 | 
            +
            tips = """
         | 
| 187 | 
            +
            ### Method
         | 
| 188 | 
            +
            This project proposes an enhanced image upscaling method that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the denoising process within the latent space.
         | 
| 189 | 
            +
             | 
| 190 | 
            +
            Let's compare our method with conventional ControlNet Tile upscaling:
         | 
| 191 | 
            +
             | 
| 192 | 
            +
            **Conventional ControlNet Tile:**
         | 
| 193 | 
            +
            * Processes tiles in pixel space, potentially leading to edge artifacts during fusion.
         | 
| 194 | 
            +
            * Processes each tile sequentially, increasing overall execution time (e.g., 16 tiles x 3 min = 48 min).
         | 
| 195 | 
            +
            * Pixel space fusion using masks (e.g., Gaussian) can result in visible seams.
         | 
| 196 | 
            +
            * Fixed or adaptively sized tiles and overlap can vary, causing inconsistencies.
         | 
| 197 | 
            +
             | 
| 198 | 
            +
            **Proposed Method (MoD ControlNet Tile Upscaler):**
         | 
| 199 | 
            +
            * Processes tiles in latent space, enabling smoother fusion and mitigating edge artifacts.
         | 
| 200 | 
            +
            * Processes all tiles in parallel during denoising, drastically reducing execution time.
         | 
| 201 | 
            +
            * Latent space fusion with dynamically calculated weights ensures seamless transitions between tiles.
         | 
| 202 | 
            +
            * Tile size and overlap are dynamically adjusted based on the upscaling scale. For scales below 4x, fixed overlap maintains consistency.
         | 
| 203 | 
            +
             | 
| 204 | 
            +
            """
         | 
| 205 | 
            +
             | 
| 206 | 
            +
            about = """
         | 
| 207 | 
            +
            📧 **Contact**
         | 
| 208 | 
            +
            <br>
         | 
| 209 | 
            +
            If you have any questions or suggestions, feel free to send your question to <b>contact@devaiexp.com</b>.
         | 
| 210 | 
            +
            """
         | 
| 211 | 
            +
             | 
| 212 | 
            +
            with gr.Blocks(css=css, theme=Platinum(), title="MoD ControlNet Tile Upscaler") as app:
         | 
| 213 | 
            +
                gr.Markdown(title)
         | 
| 214 | 
            +
                with gr.Row():
         | 
| 215 | 
            +
                    with gr.Column(scale=3):                        
         | 
| 216 | 
            +
                        with gr.Row():
         | 
| 217 | 
            +
                            with gr.Column():
         | 
| 218 | 
            +
                                input_image = gr.Image(type="pil", label="Input Image",sources=["upload"], height=500)
         | 
| 219 | 
            +
                            with gr.Column():
         | 
| 220 | 
            +
                                result = gr.Image(
         | 
| 221 | 
            +
                                    label="Generated Image", show_label=True, format="png", interactive=False, scale=1, height=500, min_width=670
         | 
| 222 | 
            +
                                )
         | 
| 223 | 
            +
                        with gr.Row():
         | 
| 224 | 
            +
                            with gr.Accordion("Input Prompt", open=False):
         | 
| 225 | 
            +
                                with gr.Column():
         | 
| 226 | 
            +
                                    prompt = gr.Textbox(
         | 
| 227 | 
            +
                                        lines=2,
         | 
| 228 | 
            +
                                        label="Prompt",
         | 
| 229 | 
            +
                                        placeholder="Default prompt for image",
         | 
| 230 | 
            +
                                        value="high-quality, noise-free edges, high quality, 4k, hd, 8k",
         | 
| 231 | 
            +
                                    )
         | 
| 232 | 
            +
                                with gr.Column():
         | 
| 233 | 
            +
                                    negative_prompt = gr.Textbox(
         | 
| 234 | 
            +
                                        lines=2,
         | 
| 235 | 
            +
                                        label="Negative Prompt (Optional)",
         | 
| 236 | 
            +
                                        placeholder="e.g., blurry, low resolution, artifacts, poor details",
         | 
| 237 | 
            +
                                        value="blurry, pixelated, noisy, low resolution, artifacts, poor details",
         | 
| 238 | 
            +
                                    )
         | 
| 239 | 
            +
                        with gr.Row():
         | 
| 240 | 
            +
                            generate_button = gr.Button("Generate", variant="primary")
         | 
| 241 | 
            +
                    with gr.Column(scale=1):
         | 
| 242 | 
            +
                        with gr.Row(elem_id="tips_row"):
         | 
| 243 | 
            +
                            gr.Markdown(tips)
         | 
| 244 | 
            +
                with gr.Sidebar(label="Parameters", open=True):
         | 
| 245 | 
            +
                    with gr.Row(elem_id="parameters_row"):
         | 
| 246 | 
            +
                        gr.Markdown("### General parameters")
         | 
| 247 | 
            +
                        tile_weighting_method = gr.Dropdown(
         | 
| 248 | 
            +
                            label="Tile Weighting Meethod", choices=["Cosine", "Gaussian"], value="Cosine"
         | 
| 249 | 
            +
                        )
         | 
| 250 | 
            +
                        tile_gaussian_sigma = gr.Slider(label="Gaussian Sigma", minimum=0.05, maximum=1.0, step=0.01, value=0.3, visible=False)
         | 
| 251 | 
            +
                        max_tile_size = gr.Dropdown(label="Max. Tile Size", choices=[1024, 1280], value=1024)
         | 
| 252 | 
            +
                        resolution = gr.Slider(minimum=128, maximum=8192, value=2048, step=128, label="Resolution")
         | 
| 253 | 
            +
                        num_inference_steps = gr.Slider(minimum=2, maximum=100, value=30, step=1, label="Inference Steps")
         | 
| 254 | 
            +
                        guidance_scale = gr.Slider(minimum=1, maximum=20, value=6, step=0.1, label="Guidance Scale")
         | 
| 255 | 
            +
                        denoising_strength = gr.Slider(minimum=0.1, maximum=1, value=0.6, step=0.01, label="Denoising Strength")
         | 
| 256 | 
            +
                        controlnet_strength = gr.Slider(
         | 
| 257 | 
            +
                            minimum=0.1, maximum=2.0, value=1.0, step=0.05, label="ControlNet Strength"
         | 
| 258 | 
            +
                        )            
         | 
| 259 | 
            +
                        hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
         | 
| 260 | 
            +
                    with gr.Row():
         | 
| 261 | 
            +
                        scheduler = gr.Dropdown(
         | 
| 262 | 
            +
                            label="Sampler",
         | 
| 263 | 
            +
                            choices=list(SAMPLERS.keys()),
         | 
| 264 | 
            +
                            value="UniPC",
         | 
| 265 | 
            +
                        )
         | 
| 266 | 
            +
                with gr.Accordion(label="Example Images", open=True):
         | 
| 267 | 
            +
                    with gr.Row(elem_id="examples_row"):
         | 
| 268 | 
            +
                        with gr.Column(scale=12, elem_id="examples_container"):
         | 
| 269 | 
            +
                            gr.Examples(
         | 
| 270 | 
            +
                                examples=[
         | 
| 271 | 
            +
                                    [   "./examples/1.jpg",
         | 
| 272 | 
            +
                                        prompt.value,
         | 
| 273 | 
            +
                                        negative_prompt.value,
         | 
| 274 | 
            +
                                        4096,
         | 
| 275 | 
            +
                                        0.0,
         | 
| 276 | 
            +
                                        35,
         | 
| 277 | 
            +
                                        0.65,
         | 
| 278 | 
            +
                                        1.0,
         | 
| 279 | 
            +
                                        0.3,
         | 
| 280 | 
            +
                                        "UniPC",
         | 
| 281 | 
            +
                                        4,
         | 
| 282 | 
            +
                                        1024,
         | 
| 283 | 
            +
                                        "Cosine"
         | 
| 284 | 
            +
                                    ],
         | 
| 285 | 
            +
                                    [   "./examples/2.jpg",
         | 
| 286 | 
            +
                                        prompt.value,
         | 
| 287 | 
            +
                                        negative_prompt.value,
         | 
| 288 | 
            +
                                        4096,
         | 
| 289 | 
            +
                                        0.5,
         | 
| 290 | 
            +
                                        35,
         | 
| 291 | 
            +
                                        0.65,
         | 
| 292 | 
            +
                                        1.0,
         | 
| 293 | 
            +
                                        0.3,
         | 
| 294 | 
            +
                                        "UniPC",
         | 
| 295 | 
            +
                                        4,
         | 
| 296 | 
            +
                                        1024,
         | 
| 297 | 
            +
                                        "Cosine"
         | 
| 298 | 
            +
                                    ],
         | 
| 299 | 
            +
                                    [   "./examples/3.jpg",
         | 
| 300 | 
            +
                                        prompt.value,
         | 
| 301 | 
            +
                                        negative_prompt.value,
         | 
| 302 | 
            +
                                        5120,
         | 
| 303 | 
            +
                                        0.5,
         | 
| 304 | 
            +
                                        50,
         | 
| 305 | 
            +
                                        0.65,
         | 
| 306 | 
            +
                                        1.0,
         | 
| 307 | 
            +
                                        0.3,
         | 
| 308 | 
            +
                                        "UniPC",
         | 
| 309 | 
            +
                                        4,
         | 
| 310 | 
            +
                                        1280,
         | 
| 311 | 
            +
                                        "Gaussian"
         | 
| 312 | 
            +
                                    ],
         | 
| 313 | 
            +
                                    [   "./examples/4.jpg",
         | 
| 314 | 
            +
                                        prompt.value,
         | 
| 315 | 
            +
                                        negative_prompt.value,
         | 
| 316 | 
            +
                                        8192,
         | 
| 317 | 
            +
                                        0.1,
         | 
| 318 | 
            +
                                        50,
         | 
| 319 | 
            +
                                        0.5,
         | 
| 320 | 
            +
                                        1.0,
         | 
| 321 | 
            +
                                        0.3,
         | 
| 322 | 
            +
                                        "UniPC",
         | 
| 323 | 
            +
                                        4,
         | 
| 324 | 
            +
                                        1024,
         | 
| 325 | 
            +
                                        "Gaussian"
         | 
| 326 | 
            +
                                    ],
         | 
| 327 | 
            +
                                    [   "./examples/5.jpg",
         | 
| 328 | 
            +
                                        prompt.value,
         | 
| 329 | 
            +
                                        negative_prompt.value,
         | 
| 330 | 
            +
                                        8192,
         | 
| 331 | 
            +
                                        0.3,
         | 
| 332 | 
            +
                                        50,
         | 
| 333 | 
            +
                                        0.5,
         | 
| 334 | 
            +
                                        1.0,
         | 
| 335 | 
            +
                                        0.3,
         | 
| 336 | 
            +
                                        "UniPC",
         | 
| 337 | 
            +
                                        4,
         | 
| 338 | 
            +
                                        1024,
         | 
| 339 | 
            +
                                        "Cosine"
         | 
| 340 | 
            +
                                    ],     
         | 
| 341 | 
            +
                                ],
         | 
| 342 | 
            +
                                inputs=[
         | 
| 343 | 
            +
                                    input_image,
         | 
| 344 | 
            +
                                    prompt,
         | 
| 345 | 
            +
                                    negative_prompt,
         | 
| 346 | 
            +
                                    resolution,
         | 
| 347 | 
            +
                                    hdr,
         | 
| 348 | 
            +
                                    num_inference_steps,
         | 
| 349 | 
            +
                                    denoising_strength,
         | 
| 350 | 
            +
                                    controlnet_strength,   
         | 
| 351 | 
            +
                                    tile_gaussian_sigma,                     
         | 
| 352 | 
            +
                                    scheduler,
         | 
| 353 | 
            +
                                    guidance_scale,
         | 
| 354 | 
            +
                                    max_tile_size,
         | 
| 355 | 
            +
                                    tile_weighting_method,
         | 
| 356 | 
            +
                                ],                    
         | 
| 357 | 
            +
                                fn=predict,
         | 
| 358 | 
            +
                                outputs=result,
         | 
| 359 | 
            +
                                cache_examples=False,
         | 
| 360 | 
            +
                            )
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                max_tile_size.select(fn=set_maximum_resolution, inputs=[max_tile_size, resolution], outputs=resolution)
         | 
| 363 | 
            +
                tile_weighting_method.select(fn=select_tile_weighting_method, inputs=tile_weighting_method, outputs=tile_gaussian_sigma)
         | 
| 364 | 
            +
                generate_button.click(
         | 
| 365 | 
            +
                    fn=clear_result,
         | 
| 366 | 
            +
                    inputs=None,
         | 
| 367 | 
            +
                    outputs=result,
         | 
| 368 | 
            +
                ).then(
         | 
| 369 | 
            +
                    fn=predict,
         | 
| 370 | 
            +
                    inputs=[
         | 
| 371 | 
            +
                        input_image,
         | 
| 372 | 
            +
                        prompt,
         | 
| 373 | 
            +
                        negative_prompt,
         | 
| 374 | 
            +
                        resolution,
         | 
| 375 | 
            +
                        hdr,
         | 
| 376 | 
            +
                        num_inference_steps,
         | 
| 377 | 
            +
                        denoising_strength,
         | 
| 378 | 
            +
                        controlnet_strength,
         | 
| 379 | 
            +
                        tile_gaussian_sigma,
         | 
| 380 | 
            +
                        scheduler,
         | 
| 381 | 
            +
                        guidance_scale,
         | 
| 382 | 
            +
                        max_tile_size,
         | 
| 383 | 
            +
                        tile_weighting_method,
         | 
| 384 | 
            +
                    ],
         | 
| 385 | 
            +
                    outputs=result,
         | 
| 386 | 
            +
                    show_progress="full"
         | 
| 387 | 
            +
                )
         | 
| 388 | 
            +
                gr.Markdown(about)
         | 
| 389 | 
            +
            app.launch(share=False)
         | 
    	
        examples/1.jpg
    ADDED
    
    |   | 
    	
        examples/2.jpg
    ADDED
    
    |   | 
    	
        examples/3.jpg
    ADDED
    
    |   | 
    	
        examples/4.jpg
    ADDED
    
    |   | 
    	
        examples/5.jpg
    ADDED
    
    |   | 
    	
        pipeline/mod_controlnet_tile_sr_sdxl.py
    ADDED
    
    | @@ -0,0 +1,1845 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2025 DEVAIEXP and The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import inspect
         | 
| 16 | 
            +
            from enum import Enum
         | 
| 17 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import numpy as np
         | 
| 20 | 
            +
            import torch
         | 
| 21 | 
            +
            import torch.nn.functional as F
         | 
| 22 | 
            +
            from PIL import Image
         | 
| 23 | 
            +
            from transformers import (
         | 
| 24 | 
            +
                CLIPTextModel,
         | 
| 25 | 
            +
                CLIPTextModelWithProjection,
         | 
| 26 | 
            +
                CLIPTokenizer,
         | 
| 27 | 
            +
            )
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
         | 
| 30 | 
            +
            from diffusers.loaders import (
         | 
| 31 | 
            +
                FromSingleFileMixin,
         | 
| 32 | 
            +
                StableDiffusionXLLoraLoaderMixin,
         | 
| 33 | 
            +
                TextualInversionLoaderMixin,
         | 
| 34 | 
            +
            )
         | 
| 35 | 
            +
            from diffusers.models import (
         | 
| 36 | 
            +
                AutoencoderKL,
         | 
| 37 | 
            +
                ControlNetModel,
         | 
| 38 | 
            +
                ControlNetUnionModel,
         | 
| 39 | 
            +
                MultiControlNetModel,
         | 
| 40 | 
            +
                UNet2DConditionModel,
         | 
| 41 | 
            +
            )
         | 
| 42 | 
            +
            from diffusers.models.attention_processor import (
         | 
| 43 | 
            +
                AttnProcessor2_0,
         | 
| 44 | 
            +
                XFormersAttnProcessor,
         | 
| 45 | 
            +
            )
         | 
| 46 | 
            +
            from diffusers.models.lora import adjust_lora_scale_text_encoder
         | 
| 47 | 
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
         | 
| 48 | 
            +
            from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
         | 
| 49 | 
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
         | 
| 50 | 
            +
            from diffusers.utils import (
         | 
| 51 | 
            +
                USE_PEFT_BACKEND,
         | 
| 52 | 
            +
                logging,
         | 
| 53 | 
            +
                replace_example_docstring,
         | 
| 54 | 
            +
                scale_lora_layers,
         | 
| 55 | 
            +
                unscale_lora_layers,
         | 
| 56 | 
            +
            )
         | 
| 57 | 
            +
            from diffusers.utils.import_utils import is_invisible_watermark_available
         | 
| 58 | 
            +
            from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            if is_invisible_watermark_available():
         | 
| 61 | 
            +
                from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            from diffusers.utils import is_torch_xla_available
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            if is_torch_xla_available():
         | 
| 66 | 
            +
                import torch_xla.core.xla_model as xm
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                XLA_AVAILABLE = True
         | 
| 69 | 
            +
            else:
         | 
| 70 | 
            +
                XLA_AVAILABLE = False
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 73 | 
            +
             | 
| 74 | 
            +
             | 
| 75 | 
            +
            EXAMPLE_DOC_STRING = """
         | 
| 76 | 
            +
                Examples:
         | 
| 77 | 
            +
                    ```py
         | 
| 78 | 
            +
                    # !pip install controlnet_aux
         | 
| 79 | 
            +
                    from diffusers import (
         | 
| 80 | 
            +
                        StableDiffusionXLControlNetUnionImg2ImgPipeline,
         | 
| 81 | 
            +
                        ControlNetUnionModel,
         | 
| 82 | 
            +
                        AutoencoderKL,
         | 
| 83 | 
            +
                    )
         | 
| 84 | 
            +
                    from diffusers.utils import load_image
         | 
| 85 | 
            +
                    import torch
         | 
| 86 | 
            +
                    from PIL import Image
         | 
| 87 | 
            +
                    import numpy as np
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    prompt = "A cat"
         | 
| 90 | 
            +
                    # download an image
         | 
| 91 | 
            +
                    image = load_image(
         | 
| 92 | 
            +
                        "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
         | 
| 93 | 
            +
                    )
         | 
| 94 | 
            +
                    # initialize the models and pipeline
         | 
| 95 | 
            +
                    controlnet = ControlNetUnionModel.from_pretrained(
         | 
| 96 | 
            +
                        "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
         | 
| 97 | 
            +
                    )
         | 
| 98 | 
            +
                    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
         | 
| 99 | 
            +
                    pipe = StableDiffusionXLControlNetUnionImg2ImgPipeline.from_pretrained(
         | 
| 100 | 
            +
                        "stabilityai/stable-diffusion-xl-base-1.0",
         | 
| 101 | 
            +
                        controlnet=controlnet,
         | 
| 102 | 
            +
                        vae=vae,
         | 
| 103 | 
            +
                        torch_dtype=torch.float16,
         | 
| 104 | 
            +
                        variant="fp16",
         | 
| 105 | 
            +
                    ).to("cuda")
         | 
| 106 | 
            +
                    # `enable_model_cpu_offload` is not recommended due to multiple generations
         | 
| 107 | 
            +
                    height = image.height
         | 
| 108 | 
            +
                    width = image.width
         | 
| 109 | 
            +
                    ratio = np.sqrt(1024.0 * 1024.0 / (width * height))
         | 
| 110 | 
            +
                    # 3 * 3 upscale correspond to 16 * 3 multiply, 2 * 2 correspond to 16 * 2 multiply and so on.
         | 
| 111 | 
            +
                    scale_image_factor = 3
         | 
| 112 | 
            +
                    base_factor = 16
         | 
| 113 | 
            +
                    factor = scale_image_factor * base_factor
         | 
| 114 | 
            +
                    W, H = int(width * ratio) // factor * factor, int(height * ratio) // factor * factor
         | 
| 115 | 
            +
                    image = image.resize((W, H))
         | 
| 116 | 
            +
                    target_width = W // scale_image_factor
         | 
| 117 | 
            +
                    target_height = H // scale_image_factor
         | 
| 118 | 
            +
                    images = []
         | 
| 119 | 
            +
                    crops_coords_list = [
         | 
| 120 | 
            +
                        (0, 0),
         | 
| 121 | 
            +
                        (0, width // 2),
         | 
| 122 | 
            +
                        (height // 2, 0),
         | 
| 123 | 
            +
                        (width // 2, height // 2),
         | 
| 124 | 
            +
                        0,
         | 
| 125 | 
            +
                        0,
         | 
| 126 | 
            +
                        0,
         | 
| 127 | 
            +
                        0,
         | 
| 128 | 
            +
                        0,
         | 
| 129 | 
            +
                    ]
         | 
| 130 | 
            +
                    for i in range(scale_image_factor):
         | 
| 131 | 
            +
                        for j in range(scale_image_factor):
         | 
| 132 | 
            +
                            left = j * target_width
         | 
| 133 | 
            +
                            top = i * target_height
         | 
| 134 | 
            +
                            right = left + target_width
         | 
| 135 | 
            +
                            bottom = top + target_height
         | 
| 136 | 
            +
                            cropped_image = image.crop((left, top, right, bottom))
         | 
| 137 | 
            +
                            cropped_image = cropped_image.resize((W, H))
         | 
| 138 | 
            +
                            images.append(cropped_image)
         | 
| 139 | 
            +
                    # set ControlNetUnion input
         | 
| 140 | 
            +
                    result_images = []
         | 
| 141 | 
            +
                    for sub_img, crops_coords in zip(images, crops_coords_list):
         | 
| 142 | 
            +
                        new_width, new_height = W, H
         | 
| 143 | 
            +
                        out = pipe(
         | 
| 144 | 
            +
                            prompt=[prompt] * 1,
         | 
| 145 | 
            +
                            image=sub_img,
         | 
| 146 | 
            +
                            control_image=[sub_img],
         | 
| 147 | 
            +
                            control_mode=[6],
         | 
| 148 | 
            +
                            width=new_width,
         | 
| 149 | 
            +
                            height=new_height,
         | 
| 150 | 
            +
                            num_inference_steps=30,
         | 
| 151 | 
            +
                            crops_coords_top_left=(W, H),
         | 
| 152 | 
            +
                            target_size=(W, H),
         | 
| 153 | 
            +
                            original_size=(W * 2, H * 2),
         | 
| 154 | 
            +
                        )
         | 
| 155 | 
            +
                        result_images.append(out.images[0])
         | 
| 156 | 
            +
                    new_im = Image.new("RGB", (new_width * scale_image_factor, new_height * scale_image_factor))
         | 
| 157 | 
            +
                    new_im.paste(result_images[0], (0, 0))
         | 
| 158 | 
            +
                    new_im.paste(result_images[1], (new_width, 0))
         | 
| 159 | 
            +
                    new_im.paste(result_images[2], (new_width * 2, 0))
         | 
| 160 | 
            +
                    new_im.paste(result_images[3], (0, new_height))
         | 
| 161 | 
            +
                    new_im.paste(result_images[4], (new_width, new_height))
         | 
| 162 | 
            +
                    new_im.paste(result_images[5], (new_width * 2, new_height))
         | 
| 163 | 
            +
                    new_im.paste(result_images[6], (0, new_height * 2))
         | 
| 164 | 
            +
                    new_im.paste(result_images[7], (new_width, new_height * 2))
         | 
| 165 | 
            +
                    new_im.paste(result_images[8], (new_width * 2, new_height * 2))
         | 
| 166 | 
            +
                    ```
         | 
| 167 | 
            +
            """
         | 
| 168 | 
            +
             | 
| 169 | 
            +
             | 
| 170 | 
            +
            # This function was copied and adapted from https://huggingface.co/spaces/gokaygokay/TileUpscalerV2, licensed under Apache 2.0.
         | 
| 171 | 
            +
            def _adaptive_tile_size(image_size, base_tile_size=512, max_tile_size=1280):
         | 
| 172 | 
            +
                """
         | 
| 173 | 
            +
                Calculate the adaptive tile size based on the image dimensions, ensuring the tile
         | 
| 174 | 
            +
                respects the aspect ratio and stays within the specified size limits.
         | 
| 175 | 
            +
                """
         | 
| 176 | 
            +
                width, height = image_size
         | 
| 177 | 
            +
                aspect_ratio = width / height
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                if aspect_ratio > 1:
         | 
| 180 | 
            +
                    # Landscape orientation
         | 
| 181 | 
            +
                    tile_width = min(width, max_tile_size)
         | 
| 182 | 
            +
                    tile_height = min(int(tile_width / aspect_ratio), max_tile_size)
         | 
| 183 | 
            +
                else:
         | 
| 184 | 
            +
                    # Portrait or square orientation
         | 
| 185 | 
            +
                    tile_height = min(height, max_tile_size)
         | 
| 186 | 
            +
                    tile_width = min(int(tile_height * aspect_ratio), max_tile_size)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                # Ensure the tile size is not smaller than the base_tile_size
         | 
| 189 | 
            +
                tile_width = max(tile_width, base_tile_size)
         | 
| 190 | 
            +
                tile_height = max(tile_height, base_tile_size)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                return tile_width, tile_height
         | 
| 193 | 
            +
             | 
| 194 | 
            +
             | 
| 195 | 
            +
            # Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py
         | 
| 196 | 
            +
            def _tile2pixel_indices(
         | 
| 197 | 
            +
                tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
         | 
| 198 | 
            +
            ):
         | 
| 199 | 
            +
                """Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                Returns a tuple with:
         | 
| 202 | 
            +
                    - Starting coordinates of rows in pixel space
         | 
| 203 | 
            +
                    - Ending coordinates of rows in pixel space
         | 
| 204 | 
            +
                    - Starting coordinates of columns in pixel space
         | 
| 205 | 
            +
                    - Ending coordinates of columns in pixel space
         | 
| 206 | 
            +
                """
         | 
| 207 | 
            +
                # Calculate initial indices
         | 
| 208 | 
            +
                px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap)
         | 
| 209 | 
            +
                px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                # Calculate end indices
         | 
| 212 | 
            +
                px_row_end = px_row_init + tile_height
         | 
| 213 | 
            +
                px_col_end = px_col_init + tile_width
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                # Ensure the last tile does not exceed the image dimensions
         | 
| 216 | 
            +
                px_row_end = min(px_row_end, image_height)
         | 
| 217 | 
            +
                px_col_end = min(px_col_end, image_width)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                return px_row_init, px_row_end, px_col_init, px_col_end
         | 
| 220 | 
            +
             | 
| 221 | 
            +
             | 
| 222 | 
            +
            # Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py
         | 
| 223 | 
            +
            def _tile2latent_indices(
         | 
| 224 | 
            +
                tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
         | 
| 225 | 
            +
            ):
         | 
| 226 | 
            +
                """Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                Returns a tuple with:
         | 
| 229 | 
            +
                    - Starting coordinates of rows in latent space
         | 
| 230 | 
            +
                    - Ending coordinates of rows in latent space
         | 
| 231 | 
            +
                    - Starting coordinates of columns in latent space
         | 
| 232 | 
            +
                    - Ending coordinates of columns in latent space
         | 
| 233 | 
            +
                """
         | 
| 234 | 
            +
                # Get pixel indices
         | 
| 235 | 
            +
                px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
         | 
| 236 | 
            +
                    tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
         | 
| 237 | 
            +
                )
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                # Convert to latent space
         | 
| 240 | 
            +
                latent_row_init = px_row_init // 8
         | 
| 241 | 
            +
                latent_row_end = px_row_end // 8
         | 
| 242 | 
            +
                latent_col_init = px_col_init // 8
         | 
| 243 | 
            +
                latent_col_end = px_col_end // 8
         | 
| 244 | 
            +
                latent_height = image_height // 8
         | 
| 245 | 
            +
                latent_width = image_width // 8
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                # Ensure the last tile does not exceed the latent dimensions
         | 
| 248 | 
            +
                latent_row_end = min(latent_row_end, latent_height)
         | 
| 249 | 
            +
                latent_col_end = min(latent_col_end, latent_width)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                return latent_row_init, latent_row_end, latent_col_init, latent_col_end
         | 
| 252 | 
            +
             | 
| 253 | 
            +
             | 
| 254 | 
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
         | 
| 255 | 
            +
            def retrieve_latents(
         | 
| 256 | 
            +
                encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
         | 
| 257 | 
            +
            ):
         | 
| 258 | 
            +
                if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
         | 
| 259 | 
            +
                    return encoder_output.latent_dist.sample(generator)
         | 
| 260 | 
            +
                elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
         | 
| 261 | 
            +
                    return encoder_output.latent_dist.mode()
         | 
| 262 | 
            +
                elif hasattr(encoder_output, "latents"):
         | 
| 263 | 
            +
                    return encoder_output.latents
         | 
| 264 | 
            +
                else:
         | 
| 265 | 
            +
                    raise AttributeError("Could not access latents of provided encoder_output")
         | 
| 266 | 
            +
             | 
| 267 | 
            +
            class TileWeightingMethod(Enum):
         | 
| 268 | 
            +
                    """Mode in which the tile weights will be generated"""
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    COSINE = "Cosine"
         | 
| 271 | 
            +
                    GAUSSIAN = "Gaussian"
         | 
| 272 | 
            +
             | 
| 273 | 
            +
            class StableDiffusionXLControlNetTileSRPipeline(
         | 
| 274 | 
            +
                DiffusionPipeline,
         | 
| 275 | 
            +
                StableDiffusionMixin,
         | 
| 276 | 
            +
                TextualInversionLoaderMixin,
         | 
| 277 | 
            +
                StableDiffusionXLLoraLoaderMixin,
         | 
| 278 | 
            +
                FromSingleFileMixin,
         | 
| 279 | 
            +
            ):
         | 
| 280 | 
            +
                r"""
         | 
| 281 | 
            +
                Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
         | 
| 284 | 
            +
                library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                The pipeline also inherits the following loading methods:
         | 
| 287 | 
            +
                    - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
         | 
| 288 | 
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
         | 
| 289 | 
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                Args:
         | 
| 292 | 
            +
                    vae ([`AutoencoderKL`]):
         | 
| 293 | 
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         | 
| 294 | 
            +
                    text_encoder ([`CLIPTextModel`]):
         | 
| 295 | 
            +
                        Frozen text-encoder. Stable Diffusion uses the text portion of
         | 
| 296 | 
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
         | 
| 297 | 
            +
                        the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
         | 
| 298 | 
            +
                    text_encoder_2 ([` CLIPTextModelWithProjection`]):
         | 
| 299 | 
            +
                        Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
         | 
| 300 | 
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
         | 
| 301 | 
            +
                        specifically the
         | 
| 302 | 
            +
                        [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
         | 
| 303 | 
            +
                        variant.
         | 
| 304 | 
            +
                    tokenizer (`CLIPTokenizer`):
         | 
| 305 | 
            +
                        Tokenizer of class
         | 
| 306 | 
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         | 
| 307 | 
            +
                    tokenizer_2 (`CLIPTokenizer`):
         | 
| 308 | 
            +
                        Second Tokenizer of class
         | 
| 309 | 
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         | 
| 310 | 
            +
                    unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
         | 
| 311 | 
            +
                    controlnet ([`ControlNetUnionModel`]):
         | 
| 312 | 
            +
                        Provides additional conditioning to the unet during the denoising process.
         | 
| 313 | 
            +
                    scheduler ([`SchedulerMixin`]):
         | 
| 314 | 
            +
                        A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
         | 
| 315 | 
            +
                        [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
         | 
| 316 | 
            +
                    requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
         | 
| 317 | 
            +
                        Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
         | 
| 318 | 
            +
                        config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
         | 
| 319 | 
            +
                    force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
         | 
| 320 | 
            +
                        Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
         | 
| 321 | 
            +
                        `stabilityai/stable-diffusion-xl-base-1-0`.
         | 
| 322 | 
            +
                    add_watermarker (`bool`, *optional*):
         | 
| 323 | 
            +
                        Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
         | 
| 324 | 
            +
                        watermark output images. If not defined, it will default to True if the package is installed, otherwise no
         | 
| 325 | 
            +
                        watermarker will be used.
         | 
| 326 | 
            +
                """
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
         | 
| 329 | 
            +
                _optional_components = [
         | 
| 330 | 
            +
                    "tokenizer",
         | 
| 331 | 
            +
                    "tokenizer_2",
         | 
| 332 | 
            +
                    "text_encoder",
         | 
| 333 | 
            +
                    "text_encoder_2",
         | 
| 334 | 
            +
                ]
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                def __init__(
         | 
| 337 | 
            +
                    self,
         | 
| 338 | 
            +
                    vae: AutoencoderKL,
         | 
| 339 | 
            +
                    text_encoder: CLIPTextModel,
         | 
| 340 | 
            +
                    text_encoder_2: CLIPTextModelWithProjection,
         | 
| 341 | 
            +
                    tokenizer: CLIPTokenizer,
         | 
| 342 | 
            +
                    tokenizer_2: CLIPTokenizer,
         | 
| 343 | 
            +
                    unet: UNet2DConditionModel,
         | 
| 344 | 
            +
                    controlnet: ControlNetUnionModel,
         | 
| 345 | 
            +
                    scheduler: KarrasDiffusionSchedulers,
         | 
| 346 | 
            +
                    requires_aesthetics_score: bool = False,
         | 
| 347 | 
            +
                    force_zeros_for_empty_prompt: bool = True,
         | 
| 348 | 
            +
                    add_watermarker: Optional[bool] = None,
         | 
| 349 | 
            +
                ):
         | 
| 350 | 
            +
                    super().__init__()
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    if not isinstance(controlnet, ControlNetUnionModel):
         | 
| 353 | 
            +
                        raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                    self.register_modules(
         | 
| 356 | 
            +
                        vae=vae,
         | 
| 357 | 
            +
                        text_encoder=text_encoder,
         | 
| 358 | 
            +
                        text_encoder_2=text_encoder_2,
         | 
| 359 | 
            +
                        tokenizer=tokenizer,
         | 
| 360 | 
            +
                        tokenizer_2=tokenizer_2,
         | 
| 361 | 
            +
                        unet=unet,
         | 
| 362 | 
            +
                        controlnet=controlnet,
         | 
| 363 | 
            +
                        scheduler=scheduler,
         | 
| 364 | 
            +
                    )
         | 
| 365 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
         | 
| 366 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
         | 
| 367 | 
            +
                    self.control_image_processor = VaeImageProcessor(
         | 
| 368 | 
            +
                        vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
         | 
| 369 | 
            +
                    )
         | 
| 370 | 
            +
                    self.mask_processor = VaeImageProcessor(
         | 
| 371 | 
            +
                        vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
         | 
| 372 | 
            +
                    )
         | 
| 373 | 
            +
                    add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                    if add_watermarker:
         | 
| 376 | 
            +
                        self.watermark = StableDiffusionXLWatermarker()
         | 
| 377 | 
            +
                    else:
         | 
| 378 | 
            +
                        self.watermark = None
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                    self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
         | 
| 381 | 
            +
                    self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
         | 
| 384 | 
            +
                def encode_prompt(
         | 
| 385 | 
            +
                    self,
         | 
| 386 | 
            +
                    prompt: str,
         | 
| 387 | 
            +
                    prompt_2: Optional[str] = None,
         | 
| 388 | 
            +
                    device: Optional[torch.device] = None,
         | 
| 389 | 
            +
                    num_images_per_prompt: int = 1,
         | 
| 390 | 
            +
                    do_classifier_free_guidance: bool = True,
         | 
| 391 | 
            +
                    negative_prompt: Optional[str] = None,
         | 
| 392 | 
            +
                    negative_prompt_2: Optional[str] = None,
         | 
| 393 | 
            +
                    prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 394 | 
            +
                    negative_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 395 | 
            +
                    pooled_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 396 | 
            +
                    negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 397 | 
            +
                    lora_scale: Optional[float] = None,
         | 
| 398 | 
            +
                    clip_skip: Optional[int] = None,
         | 
| 399 | 
            +
                ):
         | 
| 400 | 
            +
                    r"""
         | 
| 401 | 
            +
                    Encodes the prompt into text encoder hidden states.
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    Args:
         | 
| 404 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 405 | 
            +
                            prompt to be encoded
         | 
| 406 | 
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 407 | 
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         | 
| 408 | 
            +
                            used in both text-encoders
         | 
| 409 | 
            +
                        device: (`torch.device`):
         | 
| 410 | 
            +
                            torch device
         | 
| 411 | 
            +
                        num_images_per_prompt (`int`):
         | 
| 412 | 
            +
                            number of images that should be generated per prompt
         | 
| 413 | 
            +
                        do_classifier_free_guidance (`bool`):
         | 
| 414 | 
            +
                            whether to use classifier free guidance or not
         | 
| 415 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 416 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 417 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 418 | 
            +
                            less than `1`).
         | 
| 419 | 
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 420 | 
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         | 
| 421 | 
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
         | 
| 422 | 
            +
                        prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 423 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 424 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 425 | 
            +
                        negative_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 426 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 427 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 428 | 
            +
                            argument.
         | 
| 429 | 
            +
                        pooled_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 430 | 
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         | 
| 431 | 
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         | 
| 432 | 
            +
                        negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 433 | 
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 434 | 
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         | 
| 435 | 
            +
                            input argument.
         | 
| 436 | 
            +
                        lora_scale (`float`, *optional*):
         | 
| 437 | 
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         | 
| 438 | 
            +
                        clip_skip (`int`, *optional*):
         | 
| 439 | 
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         | 
| 440 | 
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         | 
| 441 | 
            +
                    """
         | 
| 442 | 
            +
                    device = device or self._execution_device
         | 
| 443 | 
            +
                    
         | 
| 444 | 
            +
                    # set lora scale so that monkey patched LoRA
         | 
| 445 | 
            +
                    # function of text encoder can correctly access it
         | 
| 446 | 
            +
                    if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
         | 
| 447 | 
            +
                        self._lora_scale = lora_scale
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                        # dynamically adjust the LoRA scale
         | 
| 450 | 
            +
                        if self.text_encoder is not None:
         | 
| 451 | 
            +
                            if not USE_PEFT_BACKEND:
         | 
| 452 | 
            +
                                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
         | 
| 453 | 
            +
                            else:
         | 
| 454 | 
            +
                                scale_lora_layers(self.text_encoder, lora_scale)
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                        if self.text_encoder_2 is not None:
         | 
| 457 | 
            +
                            if not USE_PEFT_BACKEND:
         | 
| 458 | 
            +
                                adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
         | 
| 459 | 
            +
                            else:
         | 
| 460 | 
            +
                                scale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                    if prompt is not None:
         | 
| 465 | 
            +
                        batch_size = len(prompt)
         | 
| 466 | 
            +
                    else:
         | 
| 467 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                    # Define tokenizers and text encoders
         | 
| 470 | 
            +
                    tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
         | 
| 471 | 
            +
                    text_encoders = (
         | 
| 472 | 
            +
                        [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
         | 
| 473 | 
            +
                    )
         | 
| 474 | 
            +
                    dtype = text_encoders[0].dtype
         | 
| 475 | 
            +
                    if prompt_embeds is None:
         | 
| 476 | 
            +
                        prompt_2 = prompt_2 or prompt
         | 
| 477 | 
            +
                        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                        # textual inversion: process multi-vector tokens if necessary
         | 
| 480 | 
            +
                        prompt_embeds_list = []
         | 
| 481 | 
            +
                        prompts = [prompt, prompt_2]
         | 
| 482 | 
            +
                        for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
         | 
| 483 | 
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         | 
| 484 | 
            +
                                prompt = self.maybe_convert_prompt(prompt, tokenizer)
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                            text_inputs = tokenizer(
         | 
| 487 | 
            +
                                prompt,
         | 
| 488 | 
            +
                                padding="max_length",
         | 
| 489 | 
            +
                                max_length=tokenizer.model_max_length,
         | 
| 490 | 
            +
                                truncation=True,
         | 
| 491 | 
            +
                                return_tensors="pt",
         | 
| 492 | 
            +
                            )
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                            text_input_ids = text_inputs.input_ids
         | 
| 495 | 
            +
                            untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
         | 
| 498 | 
            +
                                text_input_ids, untruncated_ids
         | 
| 499 | 
            +
                            ):
         | 
| 500 | 
            +
                                removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
         | 
| 501 | 
            +
                                logger.warning(
         | 
| 502 | 
            +
                                    "The following part of your input was truncated because CLIP can only handle sequences up to"
         | 
| 503 | 
            +
                                    f" {tokenizer.model_max_length} tokens: {removed_text}"
         | 
| 504 | 
            +
                                )
         | 
| 505 | 
            +
                            text_encoder.to(dtype)
         | 
| 506 | 
            +
                            prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         | 
| 509 | 
            +
                            if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
         | 
| 510 | 
            +
                                pooled_prompt_embeds = prompt_embeds[0]
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                            if clip_skip is None:
         | 
| 513 | 
            +
                                prompt_embeds = prompt_embeds.hidden_states[-2]
         | 
| 514 | 
            +
                            else:
         | 
| 515 | 
            +
                                # "2" because SDXL always indexes from the penultimate layer.
         | 
| 516 | 
            +
                                prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                            prompt_embeds_list.append(prompt_embeds)
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                    # get unconditional embeddings for classifier free guidance
         | 
| 523 | 
            +
                    zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
         | 
| 524 | 
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
         | 
| 525 | 
            +
                        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
         | 
| 526 | 
            +
                        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
         | 
| 527 | 
            +
                    elif do_classifier_free_guidance and negative_prompt_embeds is None:
         | 
| 528 | 
            +
                        negative_prompt = negative_prompt or ""
         | 
| 529 | 
            +
                        negative_prompt_2 = negative_prompt_2 or negative_prompt
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                        # normalize str to list
         | 
| 532 | 
            +
                        negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
         | 
| 533 | 
            +
                        negative_prompt_2 = (
         | 
| 534 | 
            +
                            batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
         | 
| 535 | 
            +
                        )
         | 
| 536 | 
            +
             | 
| 537 | 
            +
                        uncond_tokens: List[str]
         | 
| 538 | 
            +
                        if prompt is not None and type(prompt) is not type(negative_prompt):
         | 
| 539 | 
            +
                            raise TypeError(
         | 
| 540 | 
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         | 
| 541 | 
            +
                                f" {type(prompt)}."
         | 
| 542 | 
            +
                            )
         | 
| 543 | 
            +
                        elif batch_size != len(negative_prompt):
         | 
| 544 | 
            +
                            raise ValueError(
         | 
| 545 | 
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         | 
| 546 | 
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         | 
| 547 | 
            +
                                " the batch size of `prompt`."
         | 
| 548 | 
            +
                            )
         | 
| 549 | 
            +
                        else:
         | 
| 550 | 
            +
                            uncond_tokens = [negative_prompt, negative_prompt_2]
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                        negative_prompt_embeds_list = []
         | 
| 553 | 
            +
                        for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
         | 
| 554 | 
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         | 
| 555 | 
            +
                                negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
         | 
| 556 | 
            +
             | 
| 557 | 
            +
                            max_length = prompt_embeds.shape[1]
         | 
| 558 | 
            +
                            uncond_input = tokenizer(
         | 
| 559 | 
            +
                                negative_prompt,
         | 
| 560 | 
            +
                                padding="max_length",
         | 
| 561 | 
            +
                                max_length=max_length,
         | 
| 562 | 
            +
                                truncation=True,
         | 
| 563 | 
            +
                                return_tensors="pt",
         | 
| 564 | 
            +
                            )
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                            negative_prompt_embeds = text_encoder(
         | 
| 567 | 
            +
                                uncond_input.input_ids.to(device),
         | 
| 568 | 
            +
                                output_hidden_states=True,
         | 
| 569 | 
            +
                            )
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         | 
| 572 | 
            +
                            if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
         | 
| 573 | 
            +
                                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
         | 
| 574 | 
            +
                            negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
         | 
| 575 | 
            +
             | 
| 576 | 
            +
                            negative_prompt_embeds_list.append(negative_prompt_embeds)
         | 
| 577 | 
            +
             | 
| 578 | 
            +
                        negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                    if self.text_encoder_2 is not None:
         | 
| 581 | 
            +
                        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
         | 
| 582 | 
            +
                    else:
         | 
| 583 | 
            +
                        prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                    bs_embed, seq_len, _ = prompt_embeds.shape
         | 
| 586 | 
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 587 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 588 | 
            +
                    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                    if do_classifier_free_guidance:
         | 
| 591 | 
            +
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         | 
| 592 | 
            +
                        seq_len = negative_prompt_embeds.shape[1]
         | 
| 593 | 
            +
             | 
| 594 | 
            +
                        if self.text_encoder_2 is not None:
         | 
| 595 | 
            +
                            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
         | 
| 596 | 
            +
                        else:
         | 
| 597 | 
            +
                            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 600 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         | 
| 603 | 
            +
                        bs_embed * num_images_per_prompt, -1
         | 
| 604 | 
            +
                    )
         | 
| 605 | 
            +
                    if do_classifier_free_guidance:
         | 
| 606 | 
            +
                        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         | 
| 607 | 
            +
                            bs_embed * num_images_per_prompt, -1
         | 
| 608 | 
            +
                        )
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    if self.text_encoder is not None:
         | 
| 611 | 
            +
                        if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 612 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 613 | 
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         | 
| 614 | 
            +
             | 
| 615 | 
            +
                    if self.text_encoder_2 is not None:
         | 
| 616 | 
            +
                        if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 617 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 618 | 
            +
                            unscale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
         | 
| 623 | 
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         | 
| 624 | 
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         | 
| 625 | 
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         | 
| 626 | 
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         | 
| 627 | 
            +
                    # and should be between [0, 1]
         | 
| 628 | 
            +
             | 
| 629 | 
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 630 | 
            +
                    extra_step_kwargs = {}
         | 
| 631 | 
            +
                    if accepts_eta:
         | 
| 632 | 
            +
                        extra_step_kwargs["eta"] = eta
         | 
| 633 | 
            +
             | 
| 634 | 
            +
                    # check if the scheduler accepts generator
         | 
| 635 | 
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 636 | 
            +
                    if accepts_generator:
         | 
| 637 | 
            +
                        extra_step_kwargs["generator"] = generator
         | 
| 638 | 
            +
                    return extra_step_kwargs
         | 
| 639 | 
            +
             | 
| 640 | 
            +
                def check_inputs(
         | 
| 641 | 
            +
                    self,
         | 
| 642 | 
            +
                    prompt,
         | 
| 643 | 
            +
                    height,
         | 
| 644 | 
            +
                    width,
         | 
| 645 | 
            +
                    image,
         | 
| 646 | 
            +
                    strength,
         | 
| 647 | 
            +
                    num_inference_steps,
         | 
| 648 | 
            +
                    normal_tile_overlap,
         | 
| 649 | 
            +
                    border_tile_overlap,
         | 
| 650 | 
            +
                    max_tile_size,
         | 
| 651 | 
            +
                    tile_gaussian_sigma,
         | 
| 652 | 
            +
                    tile_weighting_method,
         | 
| 653 | 
            +
                    controlnet_conditioning_scale=1.0,
         | 
| 654 | 
            +
                    control_guidance_start=0.0,
         | 
| 655 | 
            +
                    control_guidance_end=1.0,
         | 
| 656 | 
            +
                ):
         | 
| 657 | 
            +
                    if height % 8 != 0 or width % 8 != 0:
         | 
| 658 | 
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                    if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         | 
| 661 | 
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                    if strength < 0 or strength > 1:
         | 
| 664 | 
            +
                        raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
         | 
| 665 | 
            +
                    if num_inference_steps is None:
         | 
| 666 | 
            +
                        raise ValueError("`num_inference_steps` cannot be None.")        
         | 
| 667 | 
            +
                    elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
         | 
| 668 | 
            +
                        raise ValueError(
         | 
| 669 | 
            +
                            f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
         | 
| 670 | 
            +
                            f" {type(num_inference_steps)}."
         | 
| 671 | 
            +
                        )
         | 
| 672 | 
            +
                    if normal_tile_overlap is None:
         | 
| 673 | 
            +
                        raise ValueError("`normal_tile_overlap` cannot be None.")        
         | 
| 674 | 
            +
                    elif not isinstance(normal_tile_overlap, int) or normal_tile_overlap < 64:
         | 
| 675 | 
            +
                        raise ValueError(
         | 
| 676 | 
            +
                            f"`normal_tile_overlap` has to be greater than 64 but is {normal_tile_overlap} of type"
         | 
| 677 | 
            +
                            f" {type(normal_tile_overlap)}."
         | 
| 678 | 
            +
                        )
         | 
| 679 | 
            +
                    if border_tile_overlap is None:
         | 
| 680 | 
            +
                        raise ValueError("`border_tile_overlap` cannot be None.")        
         | 
| 681 | 
            +
                    elif not isinstance(border_tile_overlap, int) or border_tile_overlap < 128:
         | 
| 682 | 
            +
                        raise ValueError(
         | 
| 683 | 
            +
                            f"`border_tile_overlap` has to be greater than 128 but is {border_tile_overlap} of type"
         | 
| 684 | 
            +
                            f" {type(border_tile_overlap)}."
         | 
| 685 | 
            +
                        )
         | 
| 686 | 
            +
                    if max_tile_size is None:
         | 
| 687 | 
            +
                        raise ValueError("`max_tile_size` cannot be None.")        
         | 
| 688 | 
            +
                    elif not isinstance(max_tile_size, int) or max_tile_size not in(1024, 1280):
         | 
| 689 | 
            +
                        raise ValueError(
         | 
| 690 | 
            +
                            f"`max_tile_size` has to be in 1024 or 1280 but is {max_tile_size} of type"
         | 
| 691 | 
            +
                            f" {type(max_tile_size)}."
         | 
| 692 | 
            +
                        )     
         | 
| 693 | 
            +
                    if tile_gaussian_sigma is None:
         | 
| 694 | 
            +
                        raise ValueError("`tile_gaussian_sigma` cannot be None.")        
         | 
| 695 | 
            +
                    elif not isinstance(tile_gaussian_sigma, float) or tile_gaussian_sigma <= 0:
         | 
| 696 | 
            +
                        raise ValueError(
         | 
| 697 | 
            +
                            f"`tile_gaussian_sigma` has to be a positive float but is {tile_gaussian_sigma} of type"
         | 
| 698 | 
            +
                            f" {type(tile_gaussian_sigma)}."
         | 
| 699 | 
            +
                        )
         | 
| 700 | 
            +
                    if tile_weighting_method is None:
         | 
| 701 | 
            +
                        raise ValueError("`tile_weighting_method` cannot be None.")        
         | 
| 702 | 
            +
                    elif not isinstance(tile_weighting_method, str) or tile_weighting_method not in [t.value for t in TileWeightingMethod]:
         | 
| 703 | 
            +
                        raise ValueError(
         | 
| 704 | 
            +
                            f"`tile_weighting_method` has to be a string in ({[t.value for t in TileWeightingMethod]}) but is {tile_weighting_method} of type"
         | 
| 705 | 
            +
                            f" {type(tile_weighting_method)}."
         | 
| 706 | 
            +
                        )
         | 
| 707 | 
            +
                    
         | 
| 708 | 
            +
                    # Check `image`
         | 
| 709 | 
            +
                    is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
         | 
| 710 | 
            +
                        self.controlnet, torch._dynamo.eval_frame.OptimizedModule
         | 
| 711 | 
            +
                    )
         | 
| 712 | 
            +
                    if (
         | 
| 713 | 
            +
                        isinstance(self.controlnet, ControlNetModel)
         | 
| 714 | 
            +
                        or is_compiled
         | 
| 715 | 
            +
                        and isinstance(self.controlnet._orig_mod, ControlNetModel)
         | 
| 716 | 
            +
                    ):
         | 
| 717 | 
            +
                        self.check_image(image, prompt)
         | 
| 718 | 
            +
                    elif (
         | 
| 719 | 
            +
                        isinstance(self.controlnet, ControlNetUnionModel)
         | 
| 720 | 
            +
                        or is_compiled
         | 
| 721 | 
            +
                        and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
         | 
| 722 | 
            +
                    ):
         | 
| 723 | 
            +
                        self.check_image(image, prompt)
         | 
| 724 | 
            +
                    else:
         | 
| 725 | 
            +
                        assert False
         | 
| 726 | 
            +
             | 
| 727 | 
            +
                    # Check `controlnet_conditioning_scale`
         | 
| 728 | 
            +
                    if (
         | 
| 729 | 
            +
                        isinstance(self.controlnet, ControlNetUnionModel)
         | 
| 730 | 
            +
                        or is_compiled
         | 
| 731 | 
            +
                        and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
         | 
| 732 | 
            +
                    ) or (
         | 
| 733 | 
            +
                        isinstance(self.controlnet, MultiControlNetModel)
         | 
| 734 | 
            +
                        or is_compiled
         | 
| 735 | 
            +
                        and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
         | 
| 736 | 
            +
                    ):
         | 
| 737 | 
            +
                        if not isinstance(controlnet_conditioning_scale, float):
         | 
| 738 | 
            +
                            raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
         | 
| 739 | 
            +
                    elif (
         | 
| 740 | 
            +
                        isinstance(self.controlnet, MultiControlNetModel)
         | 
| 741 | 
            +
                        or is_compiled
         | 
| 742 | 
            +
                        and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
         | 
| 743 | 
            +
                    ):
         | 
| 744 | 
            +
                        if isinstance(controlnet_conditioning_scale, list):
         | 
| 745 | 
            +
                            if any(isinstance(i, list) for i in controlnet_conditioning_scale):
         | 
| 746 | 
            +
                                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
         | 
| 747 | 
            +
                        elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
         | 
| 748 | 
            +
                            self.controlnet.nets
         | 
| 749 | 
            +
                        ):
         | 
| 750 | 
            +
                            raise ValueError(
         | 
| 751 | 
            +
                                "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
         | 
| 752 | 
            +
                                " the same length as the number of controlnets"
         | 
| 753 | 
            +
                            )
         | 
| 754 | 
            +
                    else:
         | 
| 755 | 
            +
                        assert False
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                    if not isinstance(control_guidance_start, (tuple, list)):
         | 
| 758 | 
            +
                        control_guidance_start = [control_guidance_start]
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                    if not isinstance(control_guidance_end, (tuple, list)):
         | 
| 761 | 
            +
                        control_guidance_end = [control_guidance_end]
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    if len(control_guidance_start) != len(control_guidance_end):
         | 
| 764 | 
            +
                        raise ValueError(
         | 
| 765 | 
            +
                            f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
         | 
| 766 | 
            +
                        )
         | 
| 767 | 
            +
             | 
| 768 | 
            +
                    for start, end in zip(control_guidance_start, control_guidance_end):
         | 
| 769 | 
            +
                        if start >= end:
         | 
| 770 | 
            +
                            raise ValueError(
         | 
| 771 | 
            +
                                f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
         | 
| 772 | 
            +
                            )
         | 
| 773 | 
            +
                        if start < 0.0:
         | 
| 774 | 
            +
                            raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
         | 
| 775 | 
            +
                        if end > 1.0:
         | 
| 776 | 
            +
                            raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
         | 
| 779 | 
            +
                def check_image(self, image, prompt):
         | 
| 780 | 
            +
                    image_is_pil = isinstance(image, Image.Image)
         | 
| 781 | 
            +
                    image_is_tensor = isinstance(image, torch.Tensor)
         | 
| 782 | 
            +
                    image_is_np = isinstance(image, np.ndarray)
         | 
| 783 | 
            +
                    image_is_pil_list = isinstance(image, list) and isinstance(image[0], Image.Image)
         | 
| 784 | 
            +
                    image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
         | 
| 785 | 
            +
                    image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
         | 
| 786 | 
            +
             | 
| 787 | 
            +
                    if (
         | 
| 788 | 
            +
                        not image_is_pil
         | 
| 789 | 
            +
                        and not image_is_tensor
         | 
| 790 | 
            +
                        and not image_is_np
         | 
| 791 | 
            +
                        and not image_is_pil_list
         | 
| 792 | 
            +
                        and not image_is_tensor_list
         | 
| 793 | 
            +
                        and not image_is_np_list
         | 
| 794 | 
            +
                    ):
         | 
| 795 | 
            +
                        raise TypeError(
         | 
| 796 | 
            +
                            f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
         | 
| 797 | 
            +
                        )
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                    if image_is_pil:
         | 
| 800 | 
            +
                        image_batch_size = 1
         | 
| 801 | 
            +
                    else:
         | 
| 802 | 
            +
                        image_batch_size = len(image)
         | 
| 803 | 
            +
             | 
| 804 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 805 | 
            +
                        prompt_batch_size = 1
         | 
| 806 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 807 | 
            +
                        prompt_batch_size = len(prompt)
         | 
| 808 | 
            +
             | 
| 809 | 
            +
                    if image_batch_size != 1 and image_batch_size != prompt_batch_size:
         | 
| 810 | 
            +
                        raise ValueError(
         | 
| 811 | 
            +
                            f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
         | 
| 812 | 
            +
                        )
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
         | 
| 815 | 
            +
                def prepare_control_image(
         | 
| 816 | 
            +
                    self,
         | 
| 817 | 
            +
                    image,
         | 
| 818 | 
            +
                    width,
         | 
| 819 | 
            +
                    height,
         | 
| 820 | 
            +
                    batch_size,
         | 
| 821 | 
            +
                    num_images_per_prompt,
         | 
| 822 | 
            +
                    device,
         | 
| 823 | 
            +
                    dtype,
         | 
| 824 | 
            +
                    do_classifier_free_guidance=False,
         | 
| 825 | 
            +
                    guess_mode=False,
         | 
| 826 | 
            +
                ):
         | 
| 827 | 
            +
                    image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
         | 
| 828 | 
            +
                    image_batch_size = image.shape[0]
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                    if image_batch_size == 1:
         | 
| 831 | 
            +
                        repeat_by = batch_size
         | 
| 832 | 
            +
                    else:
         | 
| 833 | 
            +
                        # image batch size is the same as prompt batch size
         | 
| 834 | 
            +
                        repeat_by = num_images_per_prompt
         | 
| 835 | 
            +
             | 
| 836 | 
            +
                    image = image.repeat_interleave(repeat_by, dim=0)
         | 
| 837 | 
            +
             | 
| 838 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 839 | 
            +
             | 
| 840 | 
            +
                    if do_classifier_free_guidance and not guess_mode:
         | 
| 841 | 
            +
                        image = torch.cat([image] * 2)
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                    return image
         | 
| 844 | 
            +
             | 
| 845 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
         | 
| 846 | 
            +
                def get_timesteps(self, num_inference_steps, strength):
         | 
| 847 | 
            +
                    # get the original timestep using init_timestep
         | 
| 848 | 
            +
                    init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
         | 
| 849 | 
            +
             | 
| 850 | 
            +
                    t_start = max(num_inference_steps - init_timestep, 0)
         | 
| 851 | 
            +
                    timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
         | 
| 852 | 
            +
                    if hasattr(self.scheduler, "set_begin_index"):
         | 
| 853 | 
            +
                        self.scheduler.set_begin_index(t_start * self.scheduler.order)
         | 
| 854 | 
            +
             | 
| 855 | 
            +
                    return timesteps, num_inference_steps - t_start
         | 
| 856 | 
            +
             | 
| 857 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
         | 
| 858 | 
            +
                def prepare_latents(
         | 
| 859 | 
            +
                    self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
         | 
| 860 | 
            +
                ):
         | 
| 861 | 
            +
                    if not isinstance(image, (torch.Tensor, Image.Image, list)):
         | 
| 862 | 
            +
                        raise ValueError(
         | 
| 863 | 
            +
                            f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
         | 
| 864 | 
            +
                        )
         | 
| 865 | 
            +
             | 
| 866 | 
            +
                    latents_mean = latents_std = None
         | 
| 867 | 
            +
                    if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
         | 
| 868 | 
            +
                        latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
         | 
| 869 | 
            +
                    if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
         | 
| 870 | 
            +
                        latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
         | 
| 871 | 
            +
             | 
| 872 | 
            +
                    # Offload text encoder if `enable_model_cpu_offload` was enabled
         | 
| 873 | 
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         | 
| 874 | 
            +
                        self.text_encoder_2.to("cpu")
         | 
| 875 | 
            +
                        torch.cuda.empty_cache()
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                    batch_size = batch_size * num_images_per_prompt
         | 
| 880 | 
            +
             | 
| 881 | 
            +
                    if image.shape[1] == 4:
         | 
| 882 | 
            +
                        init_latents = image
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                    else:
         | 
| 885 | 
            +
                        # make sure the VAE is in float32 mode, as it overflows in float16
         | 
| 886 | 
            +
                        if self.vae.config.force_upcast:
         | 
| 887 | 
            +
                            image = image.float()
         | 
| 888 | 
            +
                            self.vae.to(dtype=torch.float32)
         | 
| 889 | 
            +
             | 
| 890 | 
            +
                        if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 891 | 
            +
                            raise ValueError(
         | 
| 892 | 
            +
                                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 893 | 
            +
                                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         | 
| 894 | 
            +
                            )
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                        elif isinstance(generator, list):
         | 
| 897 | 
            +
                            if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
         | 
| 898 | 
            +
                                image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
         | 
| 899 | 
            +
                            elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
         | 
| 900 | 
            +
                                raise ValueError(
         | 
| 901 | 
            +
                                    f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
         | 
| 902 | 
            +
                                )
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                            init_latents = [
         | 
| 905 | 
            +
                                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
         | 
| 906 | 
            +
                                for i in range(batch_size)
         | 
| 907 | 
            +
                            ]
         | 
| 908 | 
            +
                            init_latents = torch.cat(init_latents, dim=0)
         | 
| 909 | 
            +
                        else:
         | 
| 910 | 
            +
                            init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                        if self.vae.config.force_upcast:
         | 
| 913 | 
            +
                            self.vae.to(dtype)
         | 
| 914 | 
            +
             | 
| 915 | 
            +
                        init_latents = init_latents.to(dtype)
         | 
| 916 | 
            +
                        if latents_mean is not None and latents_std is not None:
         | 
| 917 | 
            +
                            latents_mean = latents_mean.to(device=device, dtype=dtype)
         | 
| 918 | 
            +
                            latents_std = latents_std.to(device=device, dtype=dtype)
         | 
| 919 | 
            +
                            init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
         | 
| 920 | 
            +
                        else:
         | 
| 921 | 
            +
                            init_latents = self.vae.config.scaling_factor * init_latents
         | 
| 922 | 
            +
             | 
| 923 | 
            +
                    if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
         | 
| 924 | 
            +
                        # expand init_latents for batch_size
         | 
| 925 | 
            +
                        additional_image_per_prompt = batch_size // init_latents.shape[0]
         | 
| 926 | 
            +
                        init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
         | 
| 927 | 
            +
                    elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
         | 
| 928 | 
            +
                        raise ValueError(
         | 
| 929 | 
            +
                            f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
         | 
| 930 | 
            +
                        )
         | 
| 931 | 
            +
                    else:
         | 
| 932 | 
            +
                        init_latents = torch.cat([init_latents], dim=0)
         | 
| 933 | 
            +
             | 
| 934 | 
            +
                    if add_noise:
         | 
| 935 | 
            +
                        shape = init_latents.shape
         | 
| 936 | 
            +
                        noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         | 
| 937 | 
            +
                        # get latents
         | 
| 938 | 
            +
                        init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
         | 
| 939 | 
            +
             | 
| 940 | 
            +
                    latents = init_latents
         | 
| 941 | 
            +
             | 
| 942 | 
            +
                    return latents
         | 
| 943 | 
            +
             | 
| 944 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
         | 
| 945 | 
            +
                def _get_add_time_ids(
         | 
| 946 | 
            +
                    self,
         | 
| 947 | 
            +
                    original_size,
         | 
| 948 | 
            +
                    crops_coords_top_left,
         | 
| 949 | 
            +
                    target_size,
         | 
| 950 | 
            +
                    aesthetic_score,
         | 
| 951 | 
            +
                    negative_aesthetic_score,
         | 
| 952 | 
            +
                    negative_original_size,
         | 
| 953 | 
            +
                    negative_crops_coords_top_left,
         | 
| 954 | 
            +
                    negative_target_size,
         | 
| 955 | 
            +
                    dtype,
         | 
| 956 | 
            +
                    text_encoder_projection_dim=None,
         | 
| 957 | 
            +
                ):
         | 
| 958 | 
            +
                    if self.config.requires_aesthetics_score:
         | 
| 959 | 
            +
                        add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
         | 
| 960 | 
            +
                        add_neg_time_ids = list(
         | 
| 961 | 
            +
                            negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
         | 
| 962 | 
            +
                        )
         | 
| 963 | 
            +
                    else:
         | 
| 964 | 
            +
                        add_time_ids = list(original_size + crops_coords_top_left + target_size)
         | 
| 965 | 
            +
                        add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
         | 
| 966 | 
            +
             | 
| 967 | 
            +
                    passed_add_embed_dim = (
         | 
| 968 | 
            +
                        self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
         | 
| 969 | 
            +
                    )
         | 
| 970 | 
            +
                    expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
         | 
| 971 | 
            +
             | 
| 972 | 
            +
                    if (
         | 
| 973 | 
            +
                        expected_add_embed_dim > passed_add_embed_dim
         | 
| 974 | 
            +
                        and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
         | 
| 975 | 
            +
                    ):
         | 
| 976 | 
            +
                        raise ValueError(
         | 
| 977 | 
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
         | 
| 978 | 
            +
                        )
         | 
| 979 | 
            +
                    elif (
         | 
| 980 | 
            +
                        expected_add_embed_dim < passed_add_embed_dim
         | 
| 981 | 
            +
                        and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
         | 
| 982 | 
            +
                    ):
         | 
| 983 | 
            +
                        raise ValueError(
         | 
| 984 | 
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
         | 
| 985 | 
            +
                        )
         | 
| 986 | 
            +
                    elif expected_add_embed_dim != passed_add_embed_dim:
         | 
| 987 | 
            +
                        raise ValueError(
         | 
| 988 | 
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
         | 
| 989 | 
            +
                        )
         | 
| 990 | 
            +
             | 
| 991 | 
            +
                    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
         | 
| 992 | 
            +
                    add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
         | 
| 993 | 
            +
             | 
| 994 | 
            +
                    return add_time_ids, add_neg_time_ids
         | 
| 995 | 
            +
             | 
| 996 | 
            +
                def _generate_cosine_weights(self, tile_width, tile_height, nbatches, device, dtype):
         | 
| 997 | 
            +
                    """
         | 
| 998 | 
            +
                    Generates cosine weights as a PyTorch tensor for blending tiles.
         | 
| 999 | 
            +
             | 
| 1000 | 
            +
                    Args:
         | 
| 1001 | 
            +
                        tile_width (int): Width of the tile in pixels.
         | 
| 1002 | 
            +
                        tile_height (int): Height of the tile in pixels.
         | 
| 1003 | 
            +
                        nbatches (int): Number of batches.
         | 
| 1004 | 
            +
                        device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu').
         | 
| 1005 | 
            +
                        dtype (torch.dtype): Data type of the tensor (e.g., torch.float32).
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                    Returns:
         | 
| 1008 | 
            +
                        torch.Tensor: A tensor containing cosine weights for blending tiles, expanded to match batch and channel dimensions.
         | 
| 1009 | 
            +
                    """
         | 
| 1010 | 
            +
                    # Convert tile dimensions to latent space
         | 
| 1011 | 
            +
                    latent_width = tile_width // 8
         | 
| 1012 | 
            +
                    latent_height = tile_height // 8
         | 
| 1013 | 
            +
             | 
| 1014 | 
            +
                    # Generate x and y coordinates in latent space
         | 
| 1015 | 
            +
                    x = np.arange(0, latent_width)
         | 
| 1016 | 
            +
                    y = np.arange(0, latent_height)
         | 
| 1017 | 
            +
             | 
| 1018 | 
            +
                    # Calculate midpoints
         | 
| 1019 | 
            +
                    midpoint_x = (latent_width - 1) / 2
         | 
| 1020 | 
            +
                    midpoint_y = (latent_height - 1) / 2
         | 
| 1021 | 
            +
             | 
| 1022 | 
            +
                    # Compute cosine probabilities for x and y
         | 
| 1023 | 
            +
                    x_probs = np.cos(np.pi * (x - midpoint_x) / latent_width)
         | 
| 1024 | 
            +
                    y_probs = np.cos(np.pi * (y - midpoint_y) / latent_height)
         | 
| 1025 | 
            +
             | 
| 1026 | 
            +
                    # Create a 2D weight matrix using the outer product
         | 
| 1027 | 
            +
                    weights_np = np.outer(y_probs, x_probs)
         | 
| 1028 | 
            +
             | 
| 1029 | 
            +
                    # Convert to a PyTorch tensor with the correct device and dtype
         | 
| 1030 | 
            +
                    weights_torch = torch.tensor(weights_np, device=device, dtype=dtype)
         | 
| 1031 | 
            +
             | 
| 1032 | 
            +
                    # Expand for batch and channel dimensions
         | 
| 1033 | 
            +
                    tile_weights_expanded = torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1))
         | 
| 1034 | 
            +
             | 
| 1035 | 
            +
                    return tile_weights_expanded
         | 
| 1036 | 
            +
             | 
| 1037 | 
            +
                def _generate_gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype, sigma=0.05):
         | 
| 1038 | 
            +
                    """
         | 
| 1039 | 
            +
                    Generates Gaussian weights as a PyTorch tensor for blending tiles in latent space.
         | 
| 1040 | 
            +
             | 
| 1041 | 
            +
                    Args:
         | 
| 1042 | 
            +
                        tile_width (int): Width of the tile in pixels.
         | 
| 1043 | 
            +
                        tile_height (int): Height of the tile in pixels.
         | 
| 1044 | 
            +
                        nbatches (int): Number of batches.
         | 
| 1045 | 
            +
                        device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu').
         | 
| 1046 | 
            +
                        dtype (torch.dtype): Data type of the tensor (e.g., torch.float32).
         | 
| 1047 | 
            +
                        sigma (float, optional): Standard deviation of the Gaussian distribution. Controls the smoothness of the weights. Defaults to 0.05.
         | 
| 1048 | 
            +
             | 
| 1049 | 
            +
                    Returns:
         | 
| 1050 | 
            +
                        torch.Tensor: A tensor containing Gaussian weights for blending tiles, expanded to match batch and channel dimensions.
         | 
| 1051 | 
            +
                    """
         | 
| 1052 | 
            +
                    # Convert tile dimensions to latent space
         | 
| 1053 | 
            +
                    latent_width = tile_width // 8
         | 
| 1054 | 
            +
                    latent_height = tile_height // 8
         | 
| 1055 | 
            +
             | 
| 1056 | 
            +
                    # Generate Gaussian weights in latent space
         | 
| 1057 | 
            +
                    x = np.linspace(-1, 1, latent_width)
         | 
| 1058 | 
            +
                    y = np.linspace(-1, 1, latent_height)
         | 
| 1059 | 
            +
                    xx, yy = np.meshgrid(x, y)
         | 
| 1060 | 
            +
                    gaussian_weight = np.exp(-(xx**2 + yy**2) / (2 * sigma**2))
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
                    # Convert to a PyTorch tensor with the correct device and dtype
         | 
| 1063 | 
            +
                    weights_torch = torch.tensor(gaussian_weight, device=device, dtype=dtype)
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
                    # Expand for batch and channel dimensions
         | 
| 1066 | 
            +
                    weights_expanded = weights_torch.unsqueeze(0).unsqueeze(0)  # Add batch and channel dimensions
         | 
| 1067 | 
            +
                    weights_expanded = weights_expanded.expand(nbatches, -1, -1, -1)  # Expand to the number of batches
         | 
| 1068 | 
            +
             | 
| 1069 | 
            +
                    return weights_expanded
         | 
| 1070 | 
            +
             | 
| 1071 | 
            +
                def _get_num_tiles(self, height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap):
         | 
| 1072 | 
            +
                    """
         | 
| 1073 | 
            +
                    Calculates the number of tiles needed to cover an image, choosing the appropriate formula based on the
         | 
| 1074 | 
            +
                    ratio between the image size and the tile size.
         | 
| 1075 | 
            +
             | 
| 1076 | 
            +
                    This function automatically selects between two formulas:
         | 
| 1077 | 
            +
                    1. A universal formula for typical cases (image-to-tile ratio <= 6:1).
         | 
| 1078 | 
            +
                    2. A specialized formula with border tile overlap for larger or atypical cases (image-to-tile ratio > 6:1).
         | 
| 1079 | 
            +
             | 
| 1080 | 
            +
                    Args:
         | 
| 1081 | 
            +
                        height (int): Height of the image in pixels.
         | 
| 1082 | 
            +
                        width (int): Width of the image in pixels.
         | 
| 1083 | 
            +
                        tile_height (int): Height of each tile in pixels.
         | 
| 1084 | 
            +
                        tile_width (int): Width of each tile in pixels.
         | 
| 1085 | 
            +
                        normal_tile_overlap (int): Overlap between tiles in pixels for normal (non-border) tiles.
         | 
| 1086 | 
            +
                        border_tile_overlap (int): Overlap between tiles in pixels for border tiles.
         | 
| 1087 | 
            +
             | 
| 1088 | 
            +
                    Returns:
         | 
| 1089 | 
            +
                        tuple: A tuple containing:
         | 
| 1090 | 
            +
                            - grid_rows (int): Number of rows in the tile grid.
         | 
| 1091 | 
            +
                            - grid_cols (int): Number of columns in the tile grid.
         | 
| 1092 | 
            +
             | 
| 1093 | 
            +
                    Notes:
         | 
| 1094 | 
            +
                        - The function uses the universal formula (without border_tile_overlap) for typical cases where the
         | 
| 1095 | 
            +
                        image-to-tile ratio is 6:1 or smaller.
         | 
| 1096 | 
            +
                        - For larger or atypical cases (image-to-tile ratio > 6:1), it uses a specialized formula that includes
         | 
| 1097 | 
            +
                        border_tile_overlap to ensure complete coverage of the image, especially at the edges.
         | 
| 1098 | 
            +
                    """
         | 
| 1099 | 
            +
                    # Calculate the ratio between the image size and the tile size
         | 
| 1100 | 
            +
                    height_ratio = height / tile_height
         | 
| 1101 | 
            +
                    width_ratio = width / tile_width
         | 
| 1102 | 
            +
             | 
| 1103 | 
            +
                    # If the ratio is greater than 6:1, use the formula with border_tile_overlap
         | 
| 1104 | 
            +
                    if height_ratio > 6 or width_ratio > 6:
         | 
| 1105 | 
            +
                        grid_rows = int(np.ceil((height - border_tile_overlap) / (tile_height - normal_tile_overlap))) + 1
         | 
| 1106 | 
            +
                        grid_cols = int(np.ceil((width - border_tile_overlap) / (tile_width - normal_tile_overlap))) + 1
         | 
| 1107 | 
            +
                    else:
         | 
| 1108 | 
            +
                        # Otherwise, use the universal formula
         | 
| 1109 | 
            +
                        grid_rows = int(np.ceil((height - normal_tile_overlap) / (tile_height - normal_tile_overlap)))
         | 
| 1110 | 
            +
                        grid_cols = int(np.ceil((width - normal_tile_overlap) / (tile_width - normal_tile_overlap)))
         | 
| 1111 | 
            +
             | 
| 1112 | 
            +
                    return grid_rows, grid_cols
         | 
| 1113 | 
            +
                
         | 
| 1114 | 
            +
                def prepare_tiles(
         | 
| 1115 | 
            +
                    self,
         | 
| 1116 | 
            +
                    grid_rows,
         | 
| 1117 | 
            +
                    grid_cols,
         | 
| 1118 | 
            +
                    tile_weighting_method,
         | 
| 1119 | 
            +
                    tile_width,
         | 
| 1120 | 
            +
                    tile_height,
         | 
| 1121 | 
            +
                    normal_tile_overlap,
         | 
| 1122 | 
            +
                    border_tile_overlap,
         | 
| 1123 | 
            +
                    width,
         | 
| 1124 | 
            +
                    height,
         | 
| 1125 | 
            +
                    tile_sigma,
         | 
| 1126 | 
            +
                    batch_size,
         | 
| 1127 | 
            +
                    device,
         | 
| 1128 | 
            +
                    dtype,
         | 
| 1129 | 
            +
                ):
         | 
| 1130 | 
            +
                    """
         | 
| 1131 | 
            +
                    Processes image tiles by dynamically adjusting overlap and calculating Gaussian or cosine weights.
         | 
| 1132 | 
            +
             | 
| 1133 | 
            +
                    Args:
         | 
| 1134 | 
            +
                        grid_rows (int): Number of rows in the tile grid.
         | 
| 1135 | 
            +
                        grid_cols (int): Number of columns in the tile grid.
         | 
| 1136 | 
            +
                        tile_weighting_method (str): Method for weighting tiles. Options: "Gaussian" or "Cosine".
         | 
| 1137 | 
            +
                        tile_width (int): Width of each tile in pixels.
         | 
| 1138 | 
            +
                        tile_height (int): Height of each tile in pixels.
         | 
| 1139 | 
            +
                        normal_tile_overlap (int): Overlap between tiles in pixels for normal tiles.
         | 
| 1140 | 
            +
                        border_tile_overlap (int): Overlap between tiles in pixels for border tiles.
         | 
| 1141 | 
            +
                        width (int): Width of the image in pixels.
         | 
| 1142 | 
            +
                        height (int): Height of the image in pixels.
         | 
| 1143 | 
            +
                        tile_sigma (float): Sigma parameter for Gaussian weighting.
         | 
| 1144 | 
            +
                        batch_size (int): Batch size for weight tiles.
         | 
| 1145 | 
            +
                        device (torch.device): Device where tensors will be allocated (e.g., 'cuda' or 'cpu').
         | 
| 1146 | 
            +
                        dtype (torch.dtype): Data type of the tensors (e.g., torch.float32).
         | 
| 1147 | 
            +
             | 
| 1148 | 
            +
                    Returns:
         | 
| 1149 | 
            +
                        tuple: A tuple containing:
         | 
| 1150 | 
            +
                            - tile_weights (np.ndarray): Array of weights for each tile.
         | 
| 1151 | 
            +
                            - tile_row_overlaps (np.ndarray): Array of row overlaps for each tile.
         | 
| 1152 | 
            +
                            - tile_col_overlaps (np.ndarray): Array of column overlaps for each tile.
         | 
| 1153 | 
            +
                    """
         | 
| 1154 | 
            +
                
         | 
| 1155 | 
            +
                    # Create arrays to store dynamic overlaps and weights
         | 
| 1156 | 
            +
                    tile_row_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap)
         | 
| 1157 | 
            +
                    tile_col_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap)
         | 
| 1158 | 
            +
                    tile_weights = np.empty((grid_rows, grid_cols), dtype=object)  # Stores Gaussian or cosine weights
         | 
| 1159 | 
            +
             | 
| 1160 | 
            +
                    # Iterate over tiles to adjust overlap and calculate weights
         | 
| 1161 | 
            +
                    for row in range(grid_rows):
         | 
| 1162 | 
            +
                        for col in range(grid_cols):
         | 
| 1163 | 
            +
                            # Calculate the size of the current tile
         | 
| 1164 | 
            +
                            px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
         | 
| 1165 | 
            +
                                row, col, tile_width, tile_height, normal_tile_overlap, normal_tile_overlap, width, height
         | 
| 1166 | 
            +
                            )
         | 
| 1167 | 
            +
                            current_tile_width = px_col_end - px_col_init
         | 
| 1168 | 
            +
                            current_tile_height = px_row_end - px_row_init
         | 
| 1169 | 
            +
                            sigma = tile_sigma
         | 
| 1170 | 
            +
             | 
| 1171 | 
            +
                            # Adjust overlap for smaller tiles
         | 
| 1172 | 
            +
                            if current_tile_width < tile_width:
         | 
| 1173 | 
            +
                                px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
         | 
| 1174 | 
            +
                                    row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height
         | 
| 1175 | 
            +
                                )
         | 
| 1176 | 
            +
                                current_tile_width = px_col_end - px_col_init
         | 
| 1177 | 
            +
                                tile_col_overlaps[row, col] = border_tile_overlap
         | 
| 1178 | 
            +
                                sigma = tile_sigma * 1.2
         | 
| 1179 | 
            +
                            if current_tile_height < tile_height:
         | 
| 1180 | 
            +
                                px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
         | 
| 1181 | 
            +
                                    row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height
         | 
| 1182 | 
            +
                                )
         | 
| 1183 | 
            +
                                current_tile_height = px_row_end - px_row_init
         | 
| 1184 | 
            +
                                tile_row_overlaps[row, col] = border_tile_overlap
         | 
| 1185 | 
            +
                                sigma = tile_sigma * 1.2
         | 
| 1186 | 
            +
             | 
| 1187 | 
            +
                            # Calculate weights for the current tile
         | 
| 1188 | 
            +
                            if tile_weighting_method == TileWeightingMethod.COSINE.value:
         | 
| 1189 | 
            +
                                tile_weights[row, col] = self._generate_cosine_weights(
         | 
| 1190 | 
            +
                                    tile_width=current_tile_width,
         | 
| 1191 | 
            +
                                    tile_height=current_tile_height,
         | 
| 1192 | 
            +
                                    nbatches=batch_size,
         | 
| 1193 | 
            +
                                    device=device,
         | 
| 1194 | 
            +
                                    dtype=torch.float32,
         | 
| 1195 | 
            +
                                )
         | 
| 1196 | 
            +
                            else:
         | 
| 1197 | 
            +
                                tile_weights[row, col] = self._generate_gaussian_weights(
         | 
| 1198 | 
            +
                                    tile_width=current_tile_width,
         | 
| 1199 | 
            +
                                    tile_height=current_tile_height,
         | 
| 1200 | 
            +
                                    nbatches=batch_size,
         | 
| 1201 | 
            +
                                    device=device,
         | 
| 1202 | 
            +
                                    dtype=dtype,
         | 
| 1203 | 
            +
                                    sigma=sigma,
         | 
| 1204 | 
            +
                                )
         | 
| 1205 | 
            +
             | 
| 1206 | 
            +
                    return tile_weights, tile_row_overlaps, tile_col_overlaps
         | 
| 1207 | 
            +
             | 
| 1208 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
         | 
| 1209 | 
            +
                def upcast_vae(self):
         | 
| 1210 | 
            +
                    dtype = self.vae.dtype
         | 
| 1211 | 
            +
                    self.vae.to(dtype=torch.float32)
         | 
| 1212 | 
            +
                    use_torch_2_0_or_xformers = isinstance(
         | 
| 1213 | 
            +
                        self.vae.decoder.mid_block.attentions[0].processor,
         | 
| 1214 | 
            +
                        (
         | 
| 1215 | 
            +
                            AttnProcessor2_0,
         | 
| 1216 | 
            +
                            XFormersAttnProcessor,
         | 
| 1217 | 
            +
                        ),
         | 
| 1218 | 
            +
                    )
         | 
| 1219 | 
            +
                    # if xformers or torch_2_0 is used attention block does not need
         | 
| 1220 | 
            +
                    # to be in float32 which can save lots of memory
         | 
| 1221 | 
            +
                    if use_torch_2_0_or_xformers:
         | 
| 1222 | 
            +
                        self.vae.post_quant_conv.to(dtype)
         | 
| 1223 | 
            +
                        self.vae.decoder.conv_in.to(dtype)
         | 
| 1224 | 
            +
                        self.vae.decoder.mid_block.to(dtype)
         | 
| 1225 | 
            +
             | 
| 1226 | 
            +
                @property
         | 
| 1227 | 
            +
                def guidance_scale(self):
         | 
| 1228 | 
            +
                    return self._guidance_scale
         | 
| 1229 | 
            +
             | 
| 1230 | 
            +
                @property
         | 
| 1231 | 
            +
                def clip_skip(self):
         | 
| 1232 | 
            +
                    return self._clip_skip
         | 
| 1233 | 
            +
             | 
| 1234 | 
            +
                # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 1235 | 
            +
                # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 1236 | 
            +
                # corresponds to doing no classifier free guidance.
         | 
| 1237 | 
            +
                @property
         | 
| 1238 | 
            +
                def do_classifier_free_guidance(self):
         | 
| 1239 | 
            +
                    return self._guidance_scale > 1
         | 
| 1240 | 
            +
             | 
| 1241 | 
            +
                @property
         | 
| 1242 | 
            +
                def cross_attention_kwargs(self):
         | 
| 1243 | 
            +
                    return self._cross_attention_kwargs
         | 
| 1244 | 
            +
             | 
| 1245 | 
            +
                @property
         | 
| 1246 | 
            +
                def num_timesteps(self):
         | 
| 1247 | 
            +
                    return self._num_timesteps
         | 
| 1248 | 
            +
             | 
| 1249 | 
            +
                @property
         | 
| 1250 | 
            +
                def interrupt(self):
         | 
| 1251 | 
            +
                    return self._interrupt
         | 
| 1252 | 
            +
             | 
| 1253 | 
            +
                @torch.no_grad()
         | 
| 1254 | 
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         | 
| 1255 | 
            +
                def __call__(
         | 
| 1256 | 
            +
                    self,
         | 
| 1257 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 1258 | 
            +
                    image: PipelineImageInput = None,
         | 
| 1259 | 
            +
                    control_image: PipelineImageInput = None,
         | 
| 1260 | 
            +
                    height: Optional[int] = None,
         | 
| 1261 | 
            +
                    width: Optional[int] = None,
         | 
| 1262 | 
            +
                    strength: float = 0.9999,
         | 
| 1263 | 
            +
                    num_inference_steps: int = 50,
         | 
| 1264 | 
            +
                    guidance_scale: float = 5.0,
         | 
| 1265 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 1266 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 1267 | 
            +
                    eta: float = 0.0,
         | 
| 1268 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 1269 | 
            +
                    latents: Optional[torch.Tensor] = None,
         | 
| 1270 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 1271 | 
            +
                    return_dict: bool = True,
         | 
| 1272 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 1273 | 
            +
                    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
         | 
| 1274 | 
            +
                    guess_mode: bool = False,
         | 
| 1275 | 
            +
                    control_guidance_start: Union[float, List[float]] = 0.0,
         | 
| 1276 | 
            +
                    control_guidance_end: Union[float, List[float]] = 1.0,
         | 
| 1277 | 
            +
                    control_mode: Optional[Union[int, List[int]]] = None,
         | 
| 1278 | 
            +
                    original_size: Tuple[int, int] = None,
         | 
| 1279 | 
            +
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 1280 | 
            +
                    target_size: Tuple[int, int] = None,
         | 
| 1281 | 
            +
                    negative_original_size: Optional[Tuple[int, int]] = None,
         | 
| 1282 | 
            +
                    negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 1283 | 
            +
                    negative_target_size: Optional[Tuple[int, int]] = None,
         | 
| 1284 | 
            +
                    aesthetic_score: float = 6.0,
         | 
| 1285 | 
            +
                    negative_aesthetic_score: float = 2.5,
         | 
| 1286 | 
            +
                    clip_skip: Optional[int] = None,
         | 
| 1287 | 
            +
                    normal_tile_overlap: int = 64,
         | 
| 1288 | 
            +
                    border_tile_overlap: int = 128,
         | 
| 1289 | 
            +
                    max_tile_size: int = 1024,
         | 
| 1290 | 
            +
                    tile_gaussian_sigma: float = 0.05,
         | 
| 1291 | 
            +
                    tile_weighting_method: str = "Cosine",
         | 
| 1292 | 
            +
                    **kwargs,
         | 
| 1293 | 
            +
                ):
         | 
| 1294 | 
            +
                    r"""
         | 
| 1295 | 
            +
                    Function invoked when calling the pipeline for generation.
         | 
| 1296 | 
            +
             | 
| 1297 | 
            +
                    Args:
         | 
| 1298 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 1299 | 
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         | 
| 1300 | 
            +
                        image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, *optional*):
         | 
| 1301 | 
            +
                            The initial image to be used as the starting point for the image generation process. Can also accept
         | 
| 1302 | 
            +
                            image latents as `image`, if passing latents directly, they will not be encoded again.
         | 
| 1303 | 
            +
                        control_image (`PipelineImageInput`, *optional*):
         | 
| 1304 | 
            +
                            The ControlNet input condition. ControlNet uses this input condition to generate guidance for Unet.
         | 
| 1305 | 
            +
                            If the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
         | 
| 1306 | 
            +
                            be accepted as an image. The dimensions of the output image default to `image`'s dimensions. If height
         | 
| 1307 | 
            +
                            and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
         | 
| 1308 | 
            +
                            init, images must be passed as a list such that each element of the list can be correctly batched for
         | 
| 1309 | 
            +
                            input to a single ControlNet.
         | 
| 1310 | 
            +
                        height (`int`, *optional*):
         | 
| 1311 | 
            +
                            The height in pixels of the generated image. If not provided, defaults to the height of `control_image`.
         | 
| 1312 | 
            +
                        width (`int`, *optional*):
         | 
| 1313 | 
            +
                            The width in pixels of the generated image. If not provided, defaults to the width of `control_image`.
         | 
| 1314 | 
            +
                        strength (`float`, *optional*, defaults to 0.9999):
         | 
| 1315 | 
            +
                            Indicates the extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
         | 
| 1316 | 
            +
                            starting point, and more noise is added the higher the `strength`. The number of denoising steps depends
         | 
| 1317 | 
            +
                            on the amount of noise initially added. When `strength` is 1, added noise is maximum, and the denoising
         | 
| 1318 | 
            +
                            process runs for the full number of iterations specified in `num_inference_steps`.
         | 
| 1319 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 1320 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 1321 | 
            +
                            expense of slower inference.
         | 
| 1322 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 5.0):
         | 
| 1323 | 
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         | 
| 1324 | 
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
         | 
| 1325 | 
            +
                            Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages generating
         | 
| 1326 | 
            +
                            images closely linked to the text `prompt`, usually at the expense of lower image quality.
         | 
| 1327 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 1328 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 1329 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 1330 | 
            +
                            less than `1`).
         | 
| 1331 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 1332 | 
            +
                            The number of images to generate per prompt.
         | 
| 1333 | 
            +
                        eta (`float`, *optional*, defaults to 0.0):
         | 
| 1334 | 
            +
                            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
         | 
| 1335 | 
            +
                            [`schedulers.DDIMScheduler`], will be ignored for others.
         | 
| 1336 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 1337 | 
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         | 
| 1338 | 
            +
                            to make generation deterministic.
         | 
| 1339 | 
            +
                        latents (`torch.Tensor`, *optional*):
         | 
| 1340 | 
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 1341 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 1342 | 
            +
                            tensor will be generated by sampling using the supplied random `generator`.
         | 
| 1343 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 1344 | 
            +
                            The output format of the generated image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/):
         | 
| 1345 | 
            +
                            `PIL.Image.Image` or `np.array`.
         | 
| 1346 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 1347 | 
            +
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
         | 
| 1348 | 
            +
                            plain tuple.
         | 
| 1349 | 
            +
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 1350 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 1351 | 
            +
                            `self.processor` in
         | 
| 1352 | 
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 1353 | 
            +
                        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
         | 
| 1354 | 
            +
                            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
         | 
| 1355 | 
            +
                            to the residual in the original UNet. If multiple ControlNets are specified in init, you can set the
         | 
| 1356 | 
            +
                            corresponding scale as a list.
         | 
| 1357 | 
            +
                        guess_mode (`bool`, *optional*, defaults to `False`):
         | 
| 1358 | 
            +
                            In this mode, the ControlNet encoder will try to recognize the content of the input image even if
         | 
| 1359 | 
            +
                            you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
         | 
| 1360 | 
            +
                        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
         | 
| 1361 | 
            +
                            The percentage of total steps at which the ControlNet starts applying.
         | 
| 1362 | 
            +
                        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
         | 
| 1363 | 
            +
                            The percentage of total steps at which the ControlNet stops applying.
         | 
| 1364 | 
            +
                        control_mode (`int` or `List[int]`, *optional*):
         | 
| 1365 | 
            +
                            The mode of ControlNet guidance. Can be used to specify different behaviors for multiple ControlNets.
         | 
| 1366 | 
            +
                        original_size (`Tuple[int, int]`, *optional*):
         | 
| 1367 | 
            +
                            If `original_size` is not the same as `target_size`, the image will appear to be down- or upsampled.
         | 
| 1368 | 
            +
                            `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning.
         | 
| 1369 | 
            +
                        crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)):
         | 
| 1370 | 
            +
                            `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
         | 
| 1371 | 
            +
                            `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
         | 
| 1372 | 
            +
                            `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning.
         | 
| 1373 | 
            +
                        target_size (`Tuple[int, int]`, *optional*):
         | 
| 1374 | 
            +
                            For most cases, `target_size` should be set to the desired height and width of the generated image. If
         | 
| 1375 | 
            +
                            not specified, it will default to `(height, width)`. Part of SDXL's micro-conditioning.
         | 
| 1376 | 
            +
                        negative_original_size (`Tuple[int, int]`, *optional*):
         | 
| 1377 | 
            +
                            To negatively condition the generation process based on a specific image resolution. Part of SDXL's
         | 
| 1378 | 
            +
                            micro-conditioning.
         | 
| 1379 | 
            +
                        negative_crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)):
         | 
| 1380 | 
            +
                            To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
         | 
| 1381 | 
            +
                            micro-conditioning.
         | 
| 1382 | 
            +
                        negative_target_size (`Tuple[int, int]`, *optional*):
         | 
| 1383 | 
            +
                            To negatively condition the generation process based on a target image resolution. It should be the same
         | 
| 1384 | 
            +
                            as the `target_size` for most cases. Part of SDXL's micro-conditioning.
         | 
| 1385 | 
            +
                        aesthetic_score (`float`, *optional*, defaults to 6.0):
         | 
| 1386 | 
            +
                            Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
         | 
| 1387 | 
            +
                            Part of SDXL's micro-conditioning.
         | 
| 1388 | 
            +
                        negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
         | 
| 1389 | 
            +
                            Used to simulate an aesthetic score of the generated image by influencing the negative text condition.
         | 
| 1390 | 
            +
                            Part of SDXL's micro-conditioning.
         | 
| 1391 | 
            +
                        clip_skip (`int`, *optional*):
         | 
| 1392 | 
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         | 
| 1393 | 
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         | 
| 1394 | 
            +
                        normal_tile_overlap (`int`, *optional*, defaults to 64):
         | 
| 1395 | 
            +
                            Number of overlapping pixels between tiles in consecutive rows.
         | 
| 1396 | 
            +
                        border_tile_overlap (`int`, *optional*, defaults to 128):
         | 
| 1397 | 
            +
                            Number of overlapping pixels between tiles at the borders.
         | 
| 1398 | 
            +
                        max_tile_size (`int`, *optional*, defaults to 1024):
         | 
| 1399 | 
            +
                            Maximum size of a tile in pixels.
         | 
| 1400 | 
            +
                        tile_gaussian_sigma (`float`, *optional*, defaults to 0.3):
         | 
| 1401 | 
            +
                            Sigma parameter for Gaussian weighting of tiles.
         | 
| 1402 | 
            +
                        tile_weighting_method (`str`, *optional*, defaults to "Cosine"):
         | 
| 1403 | 
            +
                            Method for weighting tiles. Options: "Cosine" or "Gaussian".
         | 
| 1404 | 
            +
             | 
| 1405 | 
            +
                    Examples:
         | 
| 1406 | 
            +
             | 
| 1407 | 
            +
                    Returns:
         | 
| 1408 | 
            +
                        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
         | 
| 1409 | 
            +
                        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
         | 
| 1410 | 
            +
                        containing the output images.
         | 
| 1411 | 
            +
                    """
         | 
| 1412 | 
            +
             | 
| 1413 | 
            +
                    controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
         | 
| 1414 | 
            +
             | 
| 1415 | 
            +
                    # align format for control guidance
         | 
| 1416 | 
            +
                    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
         | 
| 1417 | 
            +
                        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
         | 
| 1418 | 
            +
                    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
         | 
| 1419 | 
            +
                        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
         | 
| 1420 | 
            +
             | 
| 1421 | 
            +
                    if not isinstance(control_image, list):
         | 
| 1422 | 
            +
                        control_image = [control_image]
         | 
| 1423 | 
            +
                    else:
         | 
| 1424 | 
            +
                        control_image = control_image.copy()
         | 
| 1425 | 
            +
             | 
| 1426 | 
            +
                    if control_mode is None or isinstance(control_mode, list) and len(control_mode) == 0:
         | 
| 1427 | 
            +
                        raise ValueError("The value for `control_mode` is expected!")
         | 
| 1428 | 
            +
             | 
| 1429 | 
            +
                    if not isinstance(control_mode, list):
         | 
| 1430 | 
            +
                        control_mode = [control_mode]
         | 
| 1431 | 
            +
             | 
| 1432 | 
            +
                    if len(control_image) != len(control_mode):
         | 
| 1433 | 
            +
                        raise ValueError("Expected len(control_image) == len(control_mode)")
         | 
| 1434 | 
            +
             | 
| 1435 | 
            +
                    num_control_type = controlnet.config.num_control_type
         | 
| 1436 | 
            +
             | 
| 1437 | 
            +
                    # 0. Set internal use parameters
         | 
| 1438 | 
            +
                    height = height or self.unet.config.sample_size * self.vae_scale_factor
         | 
| 1439 | 
            +
                    width = width or self.unet.config.sample_size * self.vae_scale_factor
         | 
| 1440 | 
            +
                    original_size = original_size or (height, width)
         | 
| 1441 | 
            +
                    target_size = target_size or (height, width)
         | 
| 1442 | 
            +
                    negative_original_size = negative_original_size or original_size
         | 
| 1443 | 
            +
                    negative_target_size = negative_target_size or target_size        
         | 
| 1444 | 
            +
                    control_type = [0 for _ in range(num_control_type)]
         | 
| 1445 | 
            +
                    control_type = torch.Tensor(control_type)
         | 
| 1446 | 
            +
                    self._guidance_scale = guidance_scale
         | 
| 1447 | 
            +
                    self._clip_skip = clip_skip
         | 
| 1448 | 
            +
                    self._cross_attention_kwargs = cross_attention_kwargs
         | 
| 1449 | 
            +
                    self._interrupt = False
         | 
| 1450 | 
            +
                    batch_size = 1
         | 
| 1451 | 
            +
                    device = self._execution_device
         | 
| 1452 | 
            +
                    global_pool_conditions = controlnet.config.global_pool_conditions
         | 
| 1453 | 
            +
                    guess_mode = guess_mode or global_pool_conditions
         | 
| 1454 | 
            +
             | 
| 1455 | 
            +
                    # 1. Check inputs
         | 
| 1456 | 
            +
                    for _image, control_idx in zip(control_image, control_mode):
         | 
| 1457 | 
            +
                        control_type[control_idx] = 1
         | 
| 1458 | 
            +
                        self.check_inputs(
         | 
| 1459 | 
            +
                            prompt,
         | 
| 1460 | 
            +
                            height,
         | 
| 1461 | 
            +
                            width,
         | 
| 1462 | 
            +
                            _image,
         | 
| 1463 | 
            +
                            strength,
         | 
| 1464 | 
            +
                            num_inference_steps,
         | 
| 1465 | 
            +
                            normal_tile_overlap,
         | 
| 1466 | 
            +
                            border_tile_overlap,
         | 
| 1467 | 
            +
                            max_tile_size,
         | 
| 1468 | 
            +
                            tile_gaussian_sigma,
         | 
| 1469 | 
            +
                            tile_weighting_method,
         | 
| 1470 | 
            +
                            controlnet_conditioning_scale,
         | 
| 1471 | 
            +
                            control_guidance_start,
         | 
| 1472 | 
            +
                            control_guidance_end,
         | 
| 1473 | 
            +
                        )
         | 
| 1474 | 
            +
             | 
| 1475 | 
            +
                    # 2 Get tile width and tile height size
         | 
| 1476 | 
            +
                    tile_width, tile_height = _adaptive_tile_size((width, height), max_tile_size=max_tile_size)
         | 
| 1477 | 
            +
                    
         | 
| 1478 | 
            +
                    # 2.1 Calculate the number of tiles needed 
         | 
| 1479 | 
            +
                    grid_rows, grid_cols = self._get_num_tiles(height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap)      
         | 
| 1480 | 
            +
             | 
| 1481 | 
            +
                    # 2.2 Expand prompt to number of tiles
         | 
| 1482 | 
            +
                    if not isinstance(prompt, list):
         | 
| 1483 | 
            +
                        prompt = [[prompt] * grid_cols] * grid_rows
         | 
| 1484 | 
            +
             | 
| 1485 | 
            +
                    # 2.3 Update height and width tile size by tile size and tile overlap size
         | 
| 1486 | 
            +
                    width = (grid_cols - 1) * (tile_width - normal_tile_overlap) + min(
         | 
| 1487 | 
            +
                        tile_width, width - (grid_cols - 1) * (tile_width - normal_tile_overlap)
         | 
| 1488 | 
            +
                    )
         | 
| 1489 | 
            +
                    height = (grid_rows - 1) * (tile_height - normal_tile_overlap) + min(
         | 
| 1490 | 
            +
                        tile_height, height - (grid_rows - 1) * (tile_height - normal_tile_overlap)
         | 
| 1491 | 
            +
                    )
         | 
| 1492 | 
            +
             | 
| 1493 | 
            +
                    # 3. Encode input prompt
         | 
| 1494 | 
            +
                    text_encoder_lora_scale = (
         | 
| 1495 | 
            +
                        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
         | 
| 1496 | 
            +
                    )
         | 
| 1497 | 
            +
                    text_embeddings = [
         | 
| 1498 | 
            +
                        [
         | 
| 1499 | 
            +
                            self.encode_prompt(
         | 
| 1500 | 
            +
                                prompt=col,
         | 
| 1501 | 
            +
                                device=device,
         | 
| 1502 | 
            +
                                num_images_per_prompt=num_images_per_prompt,
         | 
| 1503 | 
            +
                                do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 1504 | 
            +
                                negative_prompt=negative_prompt,
         | 
| 1505 | 
            +
                                prompt_embeds=None,
         | 
| 1506 | 
            +
                                negative_prompt_embeds=None,
         | 
| 1507 | 
            +
                                pooled_prompt_embeds=None,
         | 
| 1508 | 
            +
                                negative_pooled_prompt_embeds=None,
         | 
| 1509 | 
            +
                                lora_scale=text_encoder_lora_scale,
         | 
| 1510 | 
            +
                                clip_skip=self.clip_skip,
         | 
| 1511 | 
            +
                            )
         | 
| 1512 | 
            +
                            for col in row
         | 
| 1513 | 
            +
                        ]
         | 
| 1514 | 
            +
                        for row in prompt
         | 
| 1515 | 
            +
                    ]
         | 
| 1516 | 
            +
             | 
| 1517 | 
            +
                    # 4. Prepare latent image
         | 
| 1518 | 
            +
                    image_tensor = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
         | 
| 1519 | 
            +
             | 
| 1520 | 
            +
                    # 4.1 Prepare controlnet_conditioning_image
         | 
| 1521 | 
            +
                    control_image = self.prepare_control_image(
         | 
| 1522 | 
            +
                        image=image,
         | 
| 1523 | 
            +
                        width=width,
         | 
| 1524 | 
            +
                        height=height,
         | 
| 1525 | 
            +
                        batch_size=batch_size * num_images_per_prompt,
         | 
| 1526 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 1527 | 
            +
                        device=device,
         | 
| 1528 | 
            +
                        dtype=controlnet.dtype,
         | 
| 1529 | 
            +
                        do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 1530 | 
            +
                        guess_mode=guess_mode,
         | 
| 1531 | 
            +
                    )
         | 
| 1532 | 
            +
                    control_type = (
         | 
| 1533 | 
            +
                        control_type.reshape(1, -1)
         | 
| 1534 | 
            +
                        .to(device, dtype=controlnet.dtype)
         | 
| 1535 | 
            +
                        .repeat(batch_size * num_images_per_prompt * 2, 1)
         | 
| 1536 | 
            +
                    )
         | 
| 1537 | 
            +
             | 
| 1538 | 
            +
                    # 5. Prepare timesteps
         | 
| 1539 | 
            +
                    accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
         | 
| 1540 | 
            +
                    extra_set_kwargs = {}
         | 
| 1541 | 
            +
                    if accepts_offset:
         | 
| 1542 | 
            +
                        extra_set_kwargs["offset"] = 1
         | 
| 1543 | 
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
         | 
| 1544 | 
            +
                    timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
         | 
| 1545 | 
            +
                    latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
         | 
| 1546 | 
            +
                    self._num_timesteps = len(timesteps)
         | 
| 1547 | 
            +
             | 
| 1548 | 
            +
                    # 6. Prepare latent variables
         | 
| 1549 | 
            +
                    dtype = text_embeddings[0][0][0].dtype
         | 
| 1550 | 
            +
                    if latents is None:
         | 
| 1551 | 
            +
                        latents = self.prepare_latents(
         | 
| 1552 | 
            +
                            image_tensor,
         | 
| 1553 | 
            +
                            latent_timestep,
         | 
| 1554 | 
            +
                            batch_size,
         | 
| 1555 | 
            +
                            num_images_per_prompt,
         | 
| 1556 | 
            +
                            dtype,
         | 
| 1557 | 
            +
                            device,
         | 
| 1558 | 
            +
                            generator,
         | 
| 1559 | 
            +
                            True,
         | 
| 1560 | 
            +
                        )
         | 
| 1561 | 
            +
             | 
| 1562 | 
            +
                    # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
         | 
| 1563 | 
            +
                    if isinstance(self.scheduler, LMSDiscreteScheduler):
         | 
| 1564 | 
            +
                        latents = latents * self.scheduler.sigmas[0]
         | 
| 1565 | 
            +
             | 
| 1566 | 
            +
                    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| 1567 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 1568 | 
            +
             | 
| 1569 | 
            +
                    # 8. Create tensor stating which controlnets to keep
         | 
| 1570 | 
            +
                    controlnet_keep = []
         | 
| 1571 | 
            +
                    for i in range(len(timesteps)):
         | 
| 1572 | 
            +
                        controlnet_keep.append(
         | 
| 1573 | 
            +
                            1.0
         | 
| 1574 | 
            +
                            - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
         | 
| 1575 | 
            +
                        )
         | 
| 1576 | 
            +
             | 
| 1577 | 
            +
                    # 8.1 Prepare added time ids & embeddings
         | 
| 1578 | 
            +
                    # text_embeddings order: prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         | 
| 1579 | 
            +
                    embeddings_and_added_time = []
         | 
| 1580 | 
            +
                    crops_coords_top_left = negative_crops_coords_top_left = (tile_width, tile_height)
         | 
| 1581 | 
            +
                    for row in range(grid_rows):
         | 
| 1582 | 
            +
                        addition_embed_type_row = []
         | 
| 1583 | 
            +
                        for col in range(grid_cols):
         | 
| 1584 | 
            +
                            # extract generated values
         | 
| 1585 | 
            +
                            prompt_embeds = text_embeddings[row][col][0]
         | 
| 1586 | 
            +
                            negative_prompt_embeds = text_embeddings[row][col][1]
         | 
| 1587 | 
            +
                            pooled_prompt_embeds = text_embeddings[row][col][2]
         | 
| 1588 | 
            +
                            negative_pooled_prompt_embeds = text_embeddings[row][col][3]
         | 
| 1589 | 
            +
             | 
| 1590 | 
            +
                            if negative_original_size is None:
         | 
| 1591 | 
            +
                                negative_original_size = original_size
         | 
| 1592 | 
            +
                            if negative_target_size is None:
         | 
| 1593 | 
            +
                                negative_target_size = target_size
         | 
| 1594 | 
            +
                            add_text_embeds = pooled_prompt_embeds
         | 
| 1595 | 
            +
             | 
| 1596 | 
            +
                            if self.text_encoder_2 is None:
         | 
| 1597 | 
            +
                                text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
         | 
| 1598 | 
            +
                            else:
         | 
| 1599 | 
            +
                                text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
         | 
| 1600 | 
            +
             | 
| 1601 | 
            +
                            add_time_ids, add_neg_time_ids = self._get_add_time_ids(
         | 
| 1602 | 
            +
                                original_size,
         | 
| 1603 | 
            +
                                crops_coords_top_left,
         | 
| 1604 | 
            +
                                target_size,
         | 
| 1605 | 
            +
                                aesthetic_score,
         | 
| 1606 | 
            +
                                negative_aesthetic_score,
         | 
| 1607 | 
            +
                                negative_original_size,
         | 
| 1608 | 
            +
                                negative_crops_coords_top_left,
         | 
| 1609 | 
            +
                                negative_target_size,
         | 
| 1610 | 
            +
                                dtype=prompt_embeds.dtype,
         | 
| 1611 | 
            +
                                text_encoder_projection_dim=text_encoder_projection_dim,
         | 
| 1612 | 
            +
                            )
         | 
| 1613 | 
            +
                            add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
         | 
| 1614 | 
            +
             | 
| 1615 | 
            +
                            if self.do_classifier_free_guidance:
         | 
| 1616 | 
            +
                                prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         | 
| 1617 | 
            +
                                add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
         | 
| 1618 | 
            +
                                add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
         | 
| 1619 | 
            +
                                add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
         | 
| 1620 | 
            +
             | 
| 1621 | 
            +
                            prompt_embeds = prompt_embeds.to(device)
         | 
| 1622 | 
            +
                            add_text_embeds = add_text_embeds.to(device)
         | 
| 1623 | 
            +
                            add_time_ids = add_time_ids.to(device)
         | 
| 1624 | 
            +
                            addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids))
         | 
| 1625 | 
            +
             | 
| 1626 | 
            +
                        embeddings_and_added_time.append(addition_embed_type_row)
         | 
| 1627 | 
            +
             | 
| 1628 | 
            +
                    # 9. Prepare tiles weights and latent overlaps size to denoising process
         | 
| 1629 | 
            +
                    tile_weights, tile_row_overlaps, tile_col_overlaps = self.prepare_tiles(
         | 
| 1630 | 
            +
                        grid_rows,
         | 
| 1631 | 
            +
                        grid_cols,
         | 
| 1632 | 
            +
                        tile_weighting_method,
         | 
| 1633 | 
            +
                        tile_width,
         | 
| 1634 | 
            +
                        tile_height,
         | 
| 1635 | 
            +
                        normal_tile_overlap,
         | 
| 1636 | 
            +
                        border_tile_overlap,
         | 
| 1637 | 
            +
                        width,
         | 
| 1638 | 
            +
                        height,
         | 
| 1639 | 
            +
                        tile_gaussian_sigma,
         | 
| 1640 | 
            +
                        batch_size,
         | 
| 1641 | 
            +
                        device,
         | 
| 1642 | 
            +
                        dtype,
         | 
| 1643 | 
            +
                    )
         | 
| 1644 | 
            +
             | 
| 1645 | 
            +
                    # 10. Denoising loop
         | 
| 1646 | 
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         | 
| 1647 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 1648 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 1649 | 
            +
                            # Diffuse each tile
         | 
| 1650 | 
            +
                            noise_preds = []
         | 
| 1651 | 
            +
                            for row in range(grid_rows):
         | 
| 1652 | 
            +
                                noise_preds_row = []
         | 
| 1653 | 
            +
                                for col in range(grid_cols):
         | 
| 1654 | 
            +
                                    if self.interrupt:
         | 
| 1655 | 
            +
                                        continue
         | 
| 1656 | 
            +
                                    tile_row_overlap = tile_row_overlaps[row, col]
         | 
| 1657 | 
            +
                                    tile_col_overlap = tile_col_overlaps[row, col]
         | 
| 1658 | 
            +
             | 
| 1659 | 
            +
                                    px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
         | 
| 1660 | 
            +
                                        row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
         | 
| 1661 | 
            +
                                    )
         | 
| 1662 | 
            +
             | 
| 1663 | 
            +
                                    tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end]
         | 
| 1664 | 
            +
             | 
| 1665 | 
            +
                                    # expand the latents if we are doing classifier free guidance
         | 
| 1666 | 
            +
                                    latent_model_input = (
         | 
| 1667 | 
            +
                                        torch.cat([tile_latents] * 2)
         | 
| 1668 | 
            +
                                        if self.do_classifier_free_guidance
         | 
| 1669 | 
            +
                                        else tile_latents  # 1, 4, ...
         | 
| 1670 | 
            +
                                    )
         | 
| 1671 | 
            +
                                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 1672 | 
            +
             | 
| 1673 | 
            +
                                    # predict the noise residual
         | 
| 1674 | 
            +
                                    added_cond_kwargs = {
         | 
| 1675 | 
            +
                                        "text_embeds": embeddings_and_added_time[row][col][1],
         | 
| 1676 | 
            +
                                        "time_ids": embeddings_and_added_time[row][col][2],
         | 
| 1677 | 
            +
                                    }
         | 
| 1678 | 
            +
             | 
| 1679 | 
            +
                                    # controlnet(s) inference
         | 
| 1680 | 
            +
                                    if guess_mode and self.do_classifier_free_guidance:
         | 
| 1681 | 
            +
                                        # Infer ControlNet only for the conditional batch.
         | 
| 1682 | 
            +
                                        control_model_input = tile_latents
         | 
| 1683 | 
            +
                                        control_model_input = self.scheduler.scale_model_input(control_model_input, t)
         | 
| 1684 | 
            +
                                        controlnet_prompt_embeds = embeddings_and_added_time[row][col][0].chunk(2)[1]
         | 
| 1685 | 
            +
                                        controlnet_added_cond_kwargs = {
         | 
| 1686 | 
            +
                                            "text_embeds": embeddings_and_added_time[row][col][1].chunk(2)[1],
         | 
| 1687 | 
            +
                                            "time_ids": embeddings_and_added_time[row][col][2].chunk(2)[1],
         | 
| 1688 | 
            +
                                        }
         | 
| 1689 | 
            +
                                    else:
         | 
| 1690 | 
            +
                                        control_model_input = latent_model_input
         | 
| 1691 | 
            +
                                        controlnet_prompt_embeds = embeddings_and_added_time[row][col][0]
         | 
| 1692 | 
            +
                                        controlnet_added_cond_kwargs = added_cond_kwargs
         | 
| 1693 | 
            +
             | 
| 1694 | 
            +
                                    if isinstance(controlnet_keep[i], list):
         | 
| 1695 | 
            +
                                        cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
         | 
| 1696 | 
            +
                                    else:
         | 
| 1697 | 
            +
                                        controlnet_cond_scale = controlnet_conditioning_scale
         | 
| 1698 | 
            +
                                        if isinstance(controlnet_cond_scale, list):
         | 
| 1699 | 
            +
                                            controlnet_cond_scale = controlnet_cond_scale[0]
         | 
| 1700 | 
            +
                                        cond_scale = controlnet_cond_scale * controlnet_keep[i]
         | 
| 1701 | 
            +
             | 
| 1702 | 
            +
                                    px_row_init_pixel, px_row_end_pixel, px_col_init_pixel, px_col_end_pixel = _tile2pixel_indices(
         | 
| 1703 | 
            +
                                        row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
         | 
| 1704 | 
            +
                                    )
         | 
| 1705 | 
            +
             | 
| 1706 | 
            +
                                    tile_control_image = control_image[
         | 
| 1707 | 
            +
                                        :, :, px_row_init_pixel:px_row_end_pixel, px_col_init_pixel:px_col_end_pixel
         | 
| 1708 | 
            +
                                    ]
         | 
| 1709 | 
            +
             | 
| 1710 | 
            +
                                    down_block_res_samples, mid_block_res_sample = self.controlnet(
         | 
| 1711 | 
            +
                                        control_model_input,
         | 
| 1712 | 
            +
                                        t,
         | 
| 1713 | 
            +
                                        encoder_hidden_states=controlnet_prompt_embeds,
         | 
| 1714 | 
            +
                                        controlnet_cond=[tile_control_image],
         | 
| 1715 | 
            +
                                        control_type=control_type,
         | 
| 1716 | 
            +
                                        control_type_idx=control_mode,
         | 
| 1717 | 
            +
                                        conditioning_scale=cond_scale,
         | 
| 1718 | 
            +
                                        guess_mode=guess_mode,
         | 
| 1719 | 
            +
                                        added_cond_kwargs=controlnet_added_cond_kwargs,
         | 
| 1720 | 
            +
                                        return_dict=False,
         | 
| 1721 | 
            +
                                    )
         | 
| 1722 | 
            +
             | 
| 1723 | 
            +
                                    if guess_mode and self.do_classifier_free_guidance:
         | 
| 1724 | 
            +
                                        # Inferred ControlNet only for the conditional batch.
         | 
| 1725 | 
            +
                                        # To apply the output of ControlNet to both the unconditional and conditional batches,
         | 
| 1726 | 
            +
                                        # add 0 to the unconditional batch to keep it unchanged.
         | 
| 1727 | 
            +
                                        down_block_res_samples = [
         | 
| 1728 | 
            +
                                            torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples
         | 
| 1729 | 
            +
                                        ]
         | 
| 1730 | 
            +
                                        mid_block_res_sample = torch.cat(
         | 
| 1731 | 
            +
                                            [torch.zeros_like(mid_block_res_sample), mid_block_res_sample]
         | 
| 1732 | 
            +
                                        )
         | 
| 1733 | 
            +
             | 
| 1734 | 
            +
                                    # predict the noise residual
         | 
| 1735 | 
            +
                                    with torch.amp.autocast(device.type, dtype=dtype, enabled=dtype != self.unet.dtype):
         | 
| 1736 | 
            +
                                        noise_pred = self.unet(
         | 
| 1737 | 
            +
                                            latent_model_input,
         | 
| 1738 | 
            +
                                            t,
         | 
| 1739 | 
            +
                                            encoder_hidden_states=embeddings_and_added_time[row][col][0],
         | 
| 1740 | 
            +
                                            cross_attention_kwargs=self.cross_attention_kwargs,
         | 
| 1741 | 
            +
                                            down_block_additional_residuals=down_block_res_samples,
         | 
| 1742 | 
            +
                                            mid_block_additional_residual=mid_block_res_sample,
         | 
| 1743 | 
            +
                                            added_cond_kwargs=added_cond_kwargs,
         | 
| 1744 | 
            +
                                            return_dict=False,
         | 
| 1745 | 
            +
                                        )[0]
         | 
| 1746 | 
            +
             | 
| 1747 | 
            +
                                    # perform guidance
         | 
| 1748 | 
            +
                                    if self.do_classifier_free_guidance:
         | 
| 1749 | 
            +
                                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 1750 | 
            +
                                        noise_pred_tile = noise_pred_uncond + guidance_scale * (
         | 
| 1751 | 
            +
                                            noise_pred_text - noise_pred_uncond
         | 
| 1752 | 
            +
                                        )
         | 
| 1753 | 
            +
                                        noise_preds_row.append(noise_pred_tile)
         | 
| 1754 | 
            +
                                noise_preds.append(noise_preds_row)
         | 
| 1755 | 
            +
             | 
| 1756 | 
            +
                            # Stitch noise predictions for all tiles
         | 
| 1757 | 
            +
                            noise_pred = torch.zeros(latents.shape, device=device)
         | 
| 1758 | 
            +
                            contributors = torch.zeros(latents.shape, device=device)
         | 
| 1759 | 
            +
             | 
| 1760 | 
            +
                            # Add each tile contribution to overall latents
         | 
| 1761 | 
            +
                            for row in range(grid_rows):
         | 
| 1762 | 
            +
                                for col in range(grid_cols):
         | 
| 1763 | 
            +
                                    tile_row_overlap = tile_row_overlaps[row, col]
         | 
| 1764 | 
            +
                                    tile_col_overlap = tile_col_overlaps[row, col]
         | 
| 1765 | 
            +
                                    px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
         | 
| 1766 | 
            +
                                        row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
         | 
| 1767 | 
            +
                                    )
         | 
| 1768 | 
            +
                                    tile_weights_resized = tile_weights[row, col]
         | 
| 1769 | 
            +
             | 
| 1770 | 
            +
                                    noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += (
         | 
| 1771 | 
            +
                                        noise_preds[row][col] * tile_weights_resized
         | 
| 1772 | 
            +
                                    )
         | 
| 1773 | 
            +
                                    contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights_resized
         | 
| 1774 | 
            +
             | 
| 1775 | 
            +
                            # Average overlapping areas with more than 1 contributor
         | 
| 1776 | 
            +
                            noise_pred /= contributors
         | 
| 1777 | 
            +
                            noise_pred = noise_pred.to(dtype)
         | 
| 1778 | 
            +
             | 
| 1779 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 1780 | 
            +
                            latents_dtype = latents.dtype
         | 
| 1781 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         | 
| 1782 | 
            +
                            if latents.dtype != latents_dtype:
         | 
| 1783 | 
            +
                                if torch.backends.mps.is_available():
         | 
| 1784 | 
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         | 
| 1785 | 
            +
                                    latents = latents.to(latents_dtype)
         | 
| 1786 | 
            +
             | 
| 1787 | 
            +
                            # update progress bar
         | 
| 1788 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 1789 | 
            +
                                progress_bar.update()
         | 
| 1790 | 
            +
             | 
| 1791 | 
            +
                            if XLA_AVAILABLE:
         | 
| 1792 | 
            +
                                xm.mark_step()
         | 
| 1793 | 
            +
             | 
| 1794 | 
            +
                    # If we do sequential model offloading, let's offload unet and controlnet
         | 
| 1795 | 
            +
                    # manually for max memory savings
         | 
| 1796 | 
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         | 
| 1797 | 
            +
                        self.unet.to("cpu")
         | 
| 1798 | 
            +
                        self.controlnet.to("cpu")
         | 
| 1799 | 
            +
                        torch.cuda.empty_cache()
         | 
| 1800 | 
            +
             | 
| 1801 | 
            +
                    if not output_type == "latent":
         | 
| 1802 | 
            +
                        # make sure the VAE is in float32 mode, as it overflows in float16
         | 
| 1803 | 
            +
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         | 
| 1804 | 
            +
             | 
| 1805 | 
            +
                        if needs_upcasting:
         | 
| 1806 | 
            +
                            self.upcast_vae()
         | 
| 1807 | 
            +
                            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         | 
| 1808 | 
            +
             | 
| 1809 | 
            +
                        # unscale/denormalize the latents
         | 
| 1810 | 
            +
                        # denormalize with the mean and std if available and not None
         | 
| 1811 | 
            +
                        has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
         | 
| 1812 | 
            +
                        has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
         | 
| 1813 | 
            +
                        if has_latents_mean and has_latents_std:
         | 
| 1814 | 
            +
                            latents_mean = (
         | 
| 1815 | 
            +
                                torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         | 
| 1816 | 
            +
                            )
         | 
| 1817 | 
            +
                            latents_std = (
         | 
| 1818 | 
            +
                                torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         | 
| 1819 | 
            +
                            )
         | 
| 1820 | 
            +
                            latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
         | 
| 1821 | 
            +
                        else:
         | 
| 1822 | 
            +
                            latents = latents / self.vae.config.scaling_factor
         | 
| 1823 | 
            +
             | 
| 1824 | 
            +
                        image = self.vae.decode(latents, return_dict=False)[0]
         | 
| 1825 | 
            +
             | 
| 1826 | 
            +
                        # cast back to fp16 if needed
         | 
| 1827 | 
            +
                        if needs_upcasting:
         | 
| 1828 | 
            +
                            self.vae.to(dtype=torch.float16)
         | 
| 1829 | 
            +
             | 
| 1830 | 
            +
                        # apply watermark if available
         | 
| 1831 | 
            +
                        if self.watermark is not None:
         | 
| 1832 | 
            +
                            image = self.watermark.apply_watermark(image)
         | 
| 1833 | 
            +
             | 
| 1834 | 
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 1835 | 
            +
                    else:
         | 
| 1836 | 
            +
                        image = latents
         | 
| 1837 | 
            +
             | 
| 1838 | 
            +
                    # Offload all models
         | 
| 1839 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 1840 | 
            +
             | 
| 1841 | 
            +
                    result = StableDiffusionXLPipelineOutput(images=image)
         | 
| 1842 | 
            +
                    if not return_dict:
         | 
| 1843 | 
            +
                        return (image,)
         | 
| 1844 | 
            +
             | 
| 1845 | 
            +
                    return result
         | 
    	
        pipeline/util.py
    ADDED
    
    | @@ -0,0 +1,328 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2025 The DEVAIEXP Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            import gc
         | 
| 17 | 
            +
            import cv2
         | 
| 18 | 
            +
            import numpy as np
         | 
| 19 | 
            +
            import torch
         | 
| 20 | 
            +
            from PIL import Image
         | 
| 21 | 
            +
            from gradio.themes import Default
         | 
| 22 | 
            +
            import gradio as gr
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 26 | 
            +
            SAMPLERS = {
         | 
| 27 | 
            +
                "DDIM": ("DDIMScheduler", {}),
         | 
| 28 | 
            +
                "DDIM trailing": ("DDIMScheduler", {"timestep_spacing": "trailing"}),
         | 
| 29 | 
            +
                "DDPM": ("DDPMScheduler", {}),
         | 
| 30 | 
            +
                "DEIS": ("DEISMultistepScheduler", {}),
         | 
| 31 | 
            +
                "Heun": ("HeunDiscreteScheduler", {}),
         | 
| 32 | 
            +
                "Heun Karras": ("HeunDiscreteScheduler", {"use_karras_sigmas": True}),
         | 
| 33 | 
            +
                "Euler": ("EulerDiscreteScheduler", {}),
         | 
| 34 | 
            +
                "Euler trailing": ("EulerDiscreteScheduler", {"timestep_spacing": "trailing", "prediction_type": "sample"}),
         | 
| 35 | 
            +
                "Euler Ancestral": ("EulerAncestralDiscreteScheduler", {}),
         | 
| 36 | 
            +
                "Euler Ancestral trailing": ("EulerAncestralDiscreteScheduler", {"timestep_spacing": "trailing"}),
         | 
| 37 | 
            +
                "DPM++ 1S": ("DPMSolverMultistepScheduler", {"solver_order": 1}),
         | 
| 38 | 
            +
                "DPM++ 1S Karras": ("DPMSolverMultistepScheduler", {"solver_order": 1, "use_karras_sigmas": True}),
         | 
| 39 | 
            +
                "DPM++ 2S": ("DPMSolverSinglestepScheduler", {"use_karras_sigmas": False}),
         | 
| 40 | 
            +
                "DPM++ 2S Karras": ("DPMSolverSinglestepScheduler", {"use_karras_sigmas": True}),
         | 
| 41 | 
            +
                "DPM++ 2M": ("DPMSolverMultistepScheduler", {"use_karras_sigmas": False}),
         | 
| 42 | 
            +
                "DPM++ 2M Karras": ("DPMSolverMultistepScheduler", {"use_karras_sigmas": True}),
         | 
| 43 | 
            +
                "DPM++ 2M SDE": ("DPMSolverMultistepScheduler", {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
         | 
| 44 | 
            +
                "DPM++ 2M SDE Karras": (
         | 
| 45 | 
            +
                    "DPMSolverMultistepScheduler",
         | 
| 46 | 
            +
                    {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"},
         | 
| 47 | 
            +
                ),
         | 
| 48 | 
            +
                "DPM++ 3M": ("DPMSolverMultistepScheduler", {"solver_order": 3}),
         | 
| 49 | 
            +
                "DPM++ 3M Karras": ("DPMSolverMultistepScheduler", {"solver_order": 3, "use_karras_sigmas": True}),
         | 
| 50 | 
            +
                "DPM++ SDE": ("DPMSolverSDEScheduler", {"use_karras_sigmas": False}),
         | 
| 51 | 
            +
                "DPM++ SDE Karras": ("DPMSolverSDEScheduler", {"use_karras_sigmas": True}),
         | 
| 52 | 
            +
                "DPM2": ("KDPM2DiscreteScheduler", {}),
         | 
| 53 | 
            +
                "DPM2 Karras": ("KDPM2DiscreteScheduler", {"use_karras_sigmas": True}),
         | 
| 54 | 
            +
                "DPM2 Ancestral": ("KDPM2AncestralDiscreteScheduler", {}),
         | 
| 55 | 
            +
                "DPM2 Ancestral Karras": ("KDPM2AncestralDiscreteScheduler", {"use_karras_sigmas": True}),
         | 
| 56 | 
            +
                "LMS": ("LMSDiscreteScheduler", {}),
         | 
| 57 | 
            +
                "LMS Karras": ("LMSDiscreteScheduler", {"use_karras_sigmas": True}),
         | 
| 58 | 
            +
                "UniPC": ("UniPCMultistepScheduler", {}),
         | 
| 59 | 
            +
                "UniPC Karras": ("UniPCMultistepScheduler", {"use_karras_sigmas": True}),
         | 
| 60 | 
            +
                "PNDM": ("PNDMScheduler", {}),
         | 
| 61 | 
            +
                "Euler EDM": ("EDMEulerScheduler", {}),
         | 
| 62 | 
            +
                "Euler EDM Karras": ("EDMEulerScheduler", {"use_karras_sigmas": True}),
         | 
| 63 | 
            +
                "DPM++ 2M EDM": (
         | 
| 64 | 
            +
                    "EDMDPMSolverMultistepScheduler",
         | 
| 65 | 
            +
                    {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"},
         | 
| 66 | 
            +
                ),
         | 
| 67 | 
            +
                "DPM++ 2M EDM Karras": (
         | 
| 68 | 
            +
                    "EDMDPMSolverMultistepScheduler",
         | 
| 69 | 
            +
                    {
         | 
| 70 | 
            +
                        "use_karras_sigmas": True,
         | 
| 71 | 
            +
                        "solver_order": 2,
         | 
| 72 | 
            +
                        "solver_type": "midpoint",
         | 
| 73 | 
            +
                        "final_sigmas_type": "zero",
         | 
| 74 | 
            +
                        "algorithm_type": "dpmsolver++",
         | 
| 75 | 
            +
                    },
         | 
| 76 | 
            +
                ),
         | 
| 77 | 
            +
                "DPM++ 2M Lu": ("DPMSolverMultistepScheduler", {"use_lu_lambdas": True}),
         | 
| 78 | 
            +
                "DPM++ 2M Ef": ("DPMSolverMultistepScheduler", {"euler_at_final": True}),
         | 
| 79 | 
            +
                "DPM++ 2M SDE Lu": ("DPMSolverMultistepScheduler", {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
         | 
| 80 | 
            +
                "DPM++ 2M SDE Ef": ("DPMSolverMultistepScheduler", {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
         | 
| 81 | 
            +
                "LCM": ("LCMScheduler", {}),
         | 
| 82 | 
            +
                "LCM trailing": ("LCMScheduler", {"timestep_spacing": "trailing"}),
         | 
| 83 | 
            +
                "TCD": ("TCDScheduler", {}),
         | 
| 84 | 
            +
                "TCD trailing": ("TCDScheduler", {"timestep_spacing": "trailing"}),
         | 
| 85 | 
            +
            }
         | 
| 86 | 
            +
             | 
| 87 | 
            +
            class Platinum(Default): 
         | 
| 88 | 
            +
                def __init__(
         | 
| 89 | 
            +
                    self,                
         | 
| 90 | 
            +
                ):
         | 
| 91 | 
            +
                    super().__init__(
         | 
| 92 | 
            +
                        font = (
         | 
| 93 | 
            +
                            gr.themes.GoogleFont("Karla"), 'Segoe UI Emoji', 'Public Sans', 'system-ui', 'sans-serif'
         | 
| 94 | 
            +
                        )
         | 
| 95 | 
            +
                    )
         | 
| 96 | 
            +
                    self.name = "Diffusers"
         | 
| 97 | 
            +
                    super().set(                  
         | 
| 98 | 
            +
                        block_border_width='1px',
         | 
| 99 | 
            +
                        block_border_width_dark='1px',            
         | 
| 100 | 
            +
                        block_info_text_size='13px',
         | 
| 101 | 
            +
                        block_info_text_weight='450',
         | 
| 102 | 
            +
                        block_info_text_color='#474a50',
         | 
| 103 | 
            +
                        block_label_background_fill='*background_fill_secondary',
         | 
| 104 | 
            +
                        block_label_text_color='*neutral_700',
         | 
| 105 | 
            +
                        block_title_text_color='black',
         | 
| 106 | 
            +
                        block_title_text_weight='600',
         | 
| 107 | 
            +
                        block_background_fill='#fcfcfc',
         | 
| 108 | 
            +
                        body_background_fill='*background_fill_secondary',
         | 
| 109 | 
            +
                        body_text_color='black',
         | 
| 110 | 
            +
                        background_fill_secondary='#f8f8f8',
         | 
| 111 | 
            +
                        border_color_accent='*primary_50',
         | 
| 112 | 
            +
                        border_color_primary='#ededed',
         | 
| 113 | 
            +
                        color_accent='#7367f0',
         | 
| 114 | 
            +
                        color_accent_soft='#fcfcfc',            
         | 
| 115 | 
            +
                        panel_background_fill='#fcfcfc',
         | 
| 116 | 
            +
                        section_header_text_weight='600',
         | 
| 117 | 
            +
                        checkbox_background_color='*background_fill_secondary',
         | 
| 118 | 
            +
                        input_background_fill='white',        
         | 
| 119 | 
            +
                        input_placeholder_color='*neutral_300',
         | 
| 120 | 
            +
                        loader_color = '#7367f0',        
         | 
| 121 | 
            +
                        slider_color='#7367f0',
         | 
| 122 | 
            +
                        table_odd_background_fill='*neutral_100',
         | 
| 123 | 
            +
                        button_small_radius='*radius_sm',
         | 
| 124 | 
            +
                        button_primary_background_fill='linear-gradient(to bottom right, #7367f0, #9c93f4)',            
         | 
| 125 | 
            +
                        button_primary_background_fill_hover='linear-gradient(to bottom right, #9c93f4, #9c93f4)',
         | 
| 126 | 
            +
                        button_primary_background_fill_hover_dark='linear-gradient(to bottom right, #5e50ee, #5e50ee)',
         | 
| 127 | 
            +
                        button_cancel_background_fill='linear-gradient(to bottom right, #fc0379, #ff88ac)',
         | 
| 128 | 
            +
                        button_cancel_background_fill_dark='linear-gradient(to bottom right, #dc2626, #b91c1c)',
         | 
| 129 | 
            +
                        button_cancel_background_fill_hover='linear-gradient(to bottom right, #f592c9, #f592c9)',
         | 
| 130 | 
            +
                        button_cancel_background_fill_hover_dark='linear-gradient(to bottom right, #dc2626, #dc2626)',
         | 
| 131 | 
            +
                        button_primary_border_color='#5949ed',
         | 
| 132 | 
            +
                        button_primary_text_color='white',            
         | 
| 133 | 
            +
                        button_cancel_text_color='white',
         | 
| 134 | 
            +
                        button_cancel_text_color_dark='#dc2626',
         | 
| 135 | 
            +
                        button_cancel_border_color='#f04668',
         | 
| 136 | 
            +
                        button_cancel_border_color_dark='#dc2626',
         | 
| 137 | 
            +
                        button_cancel_border_color_hover='#fe6565',
         | 
| 138 | 
            +
                        button_cancel_border_color_hover_dark='#dc2626',
         | 
| 139 | 
            +
                        form_gap_width='1px',
         | 
| 140 | 
            +
                        layout_gap='5px'
         | 
| 141 | 
            +
                    )
         | 
| 142 | 
            +
             | 
| 143 | 
            +
             | 
| 144 | 
            +
            def select_scheduler(pipe, selected_sampler):
         | 
| 145 | 
            +
                import diffusers
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                scheduler_class_name, add_kwargs = SAMPLERS[selected_sampler]
         | 
| 148 | 
            +
                config = pipe.scheduler.config
         | 
| 149 | 
            +
                scheduler = getattr(diffusers, scheduler_class_name)
         | 
| 150 | 
            +
                if selected_sampler in ("LCM", "LCM trailing"):
         | 
| 151 | 
            +
                    config = {
         | 
| 152 | 
            +
                        x: config[x] for x in config if x not in ("skip_prk_steps", "interpolation_type", "use_karras_sigmas")
         | 
| 153 | 
            +
                    }
         | 
| 154 | 
            +
                elif selected_sampler in ("TCD", "TCD trailing"):
         | 
| 155 | 
            +
                    config = {x: config[x] for x in config if x not in ("skip_prk_steps")}
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                return scheduler.from_config(config, **add_kwargs)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
             | 
| 160 | 
            +
            def calculate_overlap(width, height, base_overlap=128):
         | 
| 161 | 
            +
                """
         | 
| 162 | 
            +
                Calculates dynamic overlap based on the image's aspect ratio.
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                Args:
         | 
| 165 | 
            +
                    width (int): Width of the image in pixels.
         | 
| 166 | 
            +
                    height (int): Height of the image in pixels.
         | 
| 167 | 
            +
                    base_overlap (int, optional): Base overlap value in pixels. Defaults to 128.
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                Returns:
         | 
| 170 | 
            +
                    tuple: A tuple containing:
         | 
| 171 | 
            +
                        - row_overlap (int): Overlap between tiles in consecutive rows.
         | 
| 172 | 
            +
                        - col_overlap (int): Overlap between tiles in consecutive columns.
         | 
| 173 | 
            +
                """
         | 
| 174 | 
            +
                ratio = height / width
         | 
| 175 | 
            +
                if ratio < 1:  # Image is wider than tall
         | 
| 176 | 
            +
                    return base_overlap // 2, base_overlap
         | 
| 177 | 
            +
                else:  # Image is taller than wide
         | 
| 178 | 
            +
                    return base_overlap, base_overlap * 2
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
            # def calculate_overlap(width, height, base_overlap=128, scale=4):
         | 
| 182 | 
            +
            #     """
         | 
| 183 | 
            +
            #     Calculates dynamic overlap based on the image's aspect ratio and resolution.
         | 
| 184 | 
            +
            #     For scales less than 4, the overlap is fixed at 64, 128 (or 128, 256).
         | 
| 185 | 
            +
            #     For scales 4 or greater, the overlap is adjusted proportionally to the scale.
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            #     Args:
         | 
| 188 | 
            +
            #         width (int): Width of the image in pixels.
         | 
| 189 | 
            +
            #         height (int): Height of the image in pixels.
         | 
| 190 | 
            +
            #         base_overlap (int, optional): Base overlap value in pixels. Defaults to 128.
         | 
| 191 | 
            +
            #         scale (int, optional): Scale factor for calculating the overlap. Defaults to 4.
         | 
| 192 | 
            +
             | 
| 193 | 
            +
            #     Returns:
         | 
| 194 | 
            +
            #         tuple: A tuple containing:
         | 
| 195 | 
            +
            #             - row_overlap (int): Overlap between tiles in consecutive rows.
         | 
| 196 | 
            +
            #             - col_overlap (int): Overlap between tiles in consecutive columns.
         | 
| 197 | 
            +
            #     """
         | 
| 198 | 
            +
            #     # Define the base scale (4)
         | 
| 199 | 
            +
            #     base_scale = 4
         | 
| 200 | 
            +
             | 
| 201 | 
            +
            #     # If scale is less than 4, use fixed overlap values
         | 
| 202 | 
            +
            #     if scale < base_scale:
         | 
| 203 | 
            +
            #         ratio = height / width
         | 
| 204 | 
            +
            #         if ratio < 1:  # Image is wider than tall
         | 
| 205 | 
            +
            #             return base_overlap // 2, base_overlap
         | 
| 206 | 
            +
            #         else:  # Image is taller than wide
         | 
| 207 | 
            +
            #             return base_overlap, base_overlap * 2
         | 
| 208 | 
            +
            #     else:
         | 
| 209 | 
            +
            #         # For scales 4 or greater, adjust overlap proportionally
         | 
| 210 | 
            +
            #         scaling_factor = scale / base_scale
         | 
| 211 | 
            +
            #         base_overlap = int(base_overlap * base_scale)
         | 
| 212 | 
            +
            #         #base_overlap = int(base_overlap * scaling_factor)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
            #         ratio = height / width
         | 
| 215 | 
            +
            #         if ratio < 1:  # Image is wider than tall
         | 
| 216 | 
            +
            #             return base_overlap // 2, base_overlap
         | 
| 217 | 
            +
            #         else:  # Image is taller than wide
         | 
| 218 | 
            +
            #             return base_overlap, base_overlap * 2
         | 
| 219 | 
            +
             | 
| 220 | 
            +
             | 
| 221 | 
            +
            # This function was copied and adapted from https://huggingface.co/spaces/gokaygokay/TileUpscalerV2, licensed under Apache 2.0.
         | 
| 222 | 
            +
            def progressive_upscale(input_image, target_resolution, steps=3):
         | 
| 223 | 
            +
                """
         | 
| 224 | 
            +
                Progressively upscales an image to the target resolution in multiple steps.
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                Args:
         | 
| 227 | 
            +
                    input_image (PIL.Image.Image): The input image to be upscaled.
         | 
| 228 | 
            +
                    target_resolution (int): The target resolution (width or height) in pixels.
         | 
| 229 | 
            +
                    steps (int, optional): The number of upscaling steps. Defaults to 3.
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                Returns:
         | 
| 232 | 
            +
                    PIL.Image.Image: The upscaled image at the target resolution.
         | 
| 233 | 
            +
                """
         | 
| 234 | 
            +
                current_image = input_image.convert("RGB")
         | 
| 235 | 
            +
                current_size = max(current_image.size)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                # Upscale in multiple steps
         | 
| 238 | 
            +
                for _ in range(steps):
         | 
| 239 | 
            +
                    if current_size >= target_resolution:
         | 
| 240 | 
            +
                        break
         | 
| 241 | 
            +
                    scale_factor = min(2, target_resolution / current_size)
         | 
| 242 | 
            +
                    new_size = (int(current_image.width * scale_factor), int(current_image.height * scale_factor))
         | 
| 243 | 
            +
                    current_image = current_image.resize(new_size, Image.LANCZOS)
         | 
| 244 | 
            +
                    current_size = max(current_image.size)
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                # Final resize to exact target resolution
         | 
| 247 | 
            +
                if current_size != target_resolution:
         | 
| 248 | 
            +
                    aspect_ratio = current_image.width / current_image.height
         | 
| 249 | 
            +
                    if current_image.width > current_image.height:
         | 
| 250 | 
            +
                        new_size = (target_resolution, int(target_resolution / aspect_ratio))
         | 
| 251 | 
            +
                    else:
         | 
| 252 | 
            +
                        new_size = (int(target_resolution * aspect_ratio), target_resolution)
         | 
| 253 | 
            +
                    current_image = current_image.resize(new_size, Image.LANCZOS)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                return current_image
         | 
| 256 | 
            +
             | 
| 257 | 
            +
             | 
| 258 | 
            +
            # This function was copied and adapted from https://huggingface.co/spaces/gokaygokay/TileUpscalerV2, licensed under Apache 2.0.
         | 
| 259 | 
            +
            def create_hdr_effect(original_image, hdr):
         | 
| 260 | 
            +
                """
         | 
| 261 | 
            +
                Applies an HDR (High Dynamic Range) effect to an image based on the specified intensity.
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                Args:
         | 
| 264 | 
            +
                    original_image (PIL.Image.Image): The original image to which the HDR effect will be applied.
         | 
| 265 | 
            +
                    hdr (float): The intensity of the HDR effect, ranging from 0 (no effect) to 1 (maximum effect).
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                Returns:
         | 
| 268 | 
            +
                    PIL.Image.Image: The image with the HDR effect applied.
         | 
| 269 | 
            +
                """
         | 
| 270 | 
            +
                if hdr == 0:
         | 
| 271 | 
            +
                    return original_image  # No effect applied if hdr is 0
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                # Convert the PIL image to a NumPy array in BGR format (OpenCV format)
         | 
| 274 | 
            +
                cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                # Define scaling factors for creating multiple exposures
         | 
| 277 | 
            +
                factors = [
         | 
| 278 | 
            +
                    1.0 - 0.9 * hdr,
         | 
| 279 | 
            +
                    1.0 - 0.7 * hdr,
         | 
| 280 | 
            +
                    1.0 - 0.45 * hdr,
         | 
| 281 | 
            +
                    1.0 - 0.25 * hdr,
         | 
| 282 | 
            +
                    1.0,
         | 
| 283 | 
            +
                    1.0 + 0.2 * hdr,
         | 
| 284 | 
            +
                    1.0 + 0.4 * hdr,
         | 
| 285 | 
            +
                    1.0 + 0.6 * hdr,
         | 
| 286 | 
            +
                    1.0 + 0.8 * hdr,
         | 
| 287 | 
            +
                ]
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                # Generate multiple exposure images by scaling the original image
         | 
| 290 | 
            +
                images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                # Merge the images using the Mertens algorithm to create an HDR effect
         | 
| 293 | 
            +
                merge_mertens = cv2.createMergeMertens()
         | 
| 294 | 
            +
                hdr_image = merge_mertens.process(images)
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                # Convert the HDR image to 8-bit format (0-255 range)
         | 
| 297 | 
            +
                hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype("uint8")
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                # Convert the image back to RGB format and return as a PIL image
         | 
| 300 | 
            +
                return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
         | 
| 301 | 
            +
             | 
| 302 | 
            +
             | 
| 303 | 
            +
            def torch_gc():
         | 
| 304 | 
            +
                if torch.cuda.is_available():
         | 
| 305 | 
            +
                    with torch.cuda.device("cuda"):
         | 
| 306 | 
            +
                        torch.cuda.empty_cache()
         | 
| 307 | 
            +
                        torch.cuda.ipc_collect()
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                gc.collect()
         | 
| 310 | 
            +
             | 
| 311 | 
            +
             | 
| 312 | 
            +
            def quantize_8bit(unet):
         | 
| 313 | 
            +
                if unet is None:
         | 
| 314 | 
            +
                    return
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                from peft.tuners.tuners_utils import BaseTunerLayer
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                dtype = unet.dtype
         | 
| 319 | 
            +
                unet.to(torch.float8_e4m3fn)
         | 
| 320 | 
            +
                for module in unet.modules():  # revert lora modules to prevent errors with fp8
         | 
| 321 | 
            +
                    if isinstance(module, BaseTunerLayer):
         | 
| 322 | 
            +
                        module.to(dtype)
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                if hasattr(unet, "encoder_hid_proj"):  # revert ip adapter modules to prevent errors with fp8
         | 
| 325 | 
            +
                    if unet.encoder_hid_proj is not None:
         | 
| 326 | 
            +
                        for module in unet.encoder_hid_proj.modules():
         | 
| 327 | 
            +
                            module.to(dtype)
         | 
| 328 | 
            +
                torch_gc()
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,11 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            torch
         | 
| 2 | 
            +
            peft
         | 
| 3 | 
            +
            opencv-python
         | 
| 4 | 
            +
            spaces
         | 
| 5 | 
            +
            scipy
         | 
| 6 | 
            +
            gradio==5.15.0
         | 
| 7 | 
            +
            numpy==1.26.4
         | 
| 8 | 
            +
            transformers
         | 
| 9 | 
            +
            accelerate
         | 
| 10 | 
            +
            diffusers
         | 
| 11 | 
            +
            fastapi>=0.115.2
         | 
