File size: 10,347 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import argparse
import os
import uuid

import cv2
import gradio as gr
import kornia
import numpy as np
import torch
from loguru import logger
from torchaudio.io import StreamReader
from torchaudio.io import StreamWriter

from benchmark.face_pipeline import alignFace
from benchmark.face_pipeline import FaceDetector
from benchmark.face_pipeline import inverse_transform_batch
from benchmark.face_pipeline import SoftErosion
from configs.train_config import TrainConfig
from models.model import HifiFace


class VideoSwap:
    def __init__(self, cfg, model=None):
        self.facedetector = FaceDetector(cfg.face_detector_weights)
        self.alignface = alignFace()
        self.work_dir = "."
        opt = TrainConfig()
        opt.use_ddp = False
        self.device = "cuda"
        self.ffmpeg_device = cfg.ffmpeg_device
        self.num_frames = 10
        self.kps_window = []
        checkpoint = (cfg.model_path, cfg.model_idx)
        if model is None:
            self.model = HifiFace(
                opt.identity_extractor_config, is_training=False, device=self.device, load_checkpoint=checkpoint
            )
        else:
            self.model = model
        self.model.eval()
        os.makedirs(self.work_dir, exist_ok=True)
        uid = uuid.uuid4()
        self.swapped_video = os.path.join(self.work_dir, f"tmp_{uid}.mp4")

        # model-idx_image-name_target-video-name.mp4
        swapped_with_audio_name = f"result_{uid}.mp4"

        # 带有音频的换脸视频
        self.swapped_video_with_audio = os.path.join(self.work_dir, swapped_with_audio_name)

        self.smooth_mask = SoftErosion(kernel_size=7, threshold=0.9, iterations=7).to(self.device)

    def yuv_to_rgb(self, img):
        img = img.to(torch.float)
        y = img[..., 0, :, :]
        u = img[..., 1, :, :]
        v = img[..., 2, :, :]
        y /= 255

        u = u / 255 - 0.5
        v = v / 255 - 0.5

        r = y + 1.14 * v
        g = y + -0.396 * u - 0.581 * v
        b = y + 2.029 * u

        rgb = torch.stack([r, g, b], -1)
        return rgb

    def rgb_to_yuv(self, img):
        r = img[..., 0, :, :]
        g = img[..., 1, :, :]
        b = img[..., 2, :, :]
        y = (0.299 * r + 0.587 * g + 0.114 * b) * 255
        u = (-0.1471 * r - 0.2889 * g + 0.4360 * b) * 255 + 128
        v = (0.6149 * r - 0.5149 * g - 0.1 * b) * 255 + 128
        yuv = torch.stack([y, u, v], -1)
        return torch.clamp(yuv, 0.0, 255.0, out=None).type(dtype=torch.uint8).transpose(3, 2).transpose(2, 1)

    def _geometry_transfrom_warp_affine(self, swapped_image, inv_att_transforms, frame_size, square_mask):
        swapped_image = kornia.geometry.transform.warp_affine(
            swapped_image,
            inv_att_transforms,
            frame_size,
            mode="bilinear",
            padding_mode="border",
            align_corners=True,
            fill_value=torch.zeros(3),
        )

        square_mask = kornia.geometry.transform.warp_affine(
            square_mask,
            inv_att_transforms,
            frame_size,
            mode="bilinear",
            padding_mode="zeros",
            align_corners=True,
            fill_value=torch.zeros(3),
        )
        return swapped_image, square_mask

    def smooth_kps(self, kps):
        self.kps_window.append(kps.flatten())
        self.kps_window = self.kps_window[1:]
        X = np.stack(self.kps_window, axis=1)
        y = self.kps_window[-1]
        y_cor = X @ np.linalg.inv(X.transpose() @ X - 0.0007 * np.eye(self.num_frames)) @ X.transpose() @ y
        self.kps_window[-1] = y_cor
        return y_cor.reshape((5, 2))

    def detect_and_align(self, image, src_is=False):
        detection = self.facedetector(image)
        if detection.score is None:
            self.kps_window = []
            return None, None
        max_score_ind = np.argmax(detection.score, axis=0)
        kps = detection.key_points[max_score_ind]
        if len(self.kps_window) < self.num_frames:
            self.kps_window.append(kps.flatten())
        else:
            kps = self.smooth_kps(kps)
        align_img, warp_mat = self.alignface.align_face(image, kps, 256)
        align_img = cv2.resize(align_img, (256, 256))
        align_img = align_img.transpose(2, 0, 1)
        align_img = torch.from_numpy(align_img).unsqueeze(0).to(self.device).float()
        align_img = align_img / 255.0
        if src_is:
            self.kps_window = []
        return align_img, warp_mat

    def inference(self, source_face, target_video, shape_rate, id_rate, iterations=1):
        video = cv2.VideoCapture(target_video)
        # 获取视频宽度
        frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        # 获取视频高度
        frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        # 获取帧率
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        video.release()
        self.frame_size = (frame_height, frame_width)
        if self.ffmpeg_device == "cuda":
            self.decode_config = {"frames_per_chunk": 1, "decoder": "h264", "format": "yuv444p"}
            # self.decode_config = {
            #     "frames_per_chunk": 1,
            #     "decoder": "h264_cuvid",
            #     "decoder_option": {"gpu": "0"},
            #     "hw_accel": "cuda:0",
            # }

            self.encode_config = {
                "encoder": "h264_nvenc",  # GPU Encoder
                "encoder_format": "yuv444p",
                "encoder_option": {"gpu": "0", "cq": "10"},  # Run encoding on the cuda:0 device
                "hw_accel": "cuda:0",  # Data comes from cuda:0 device
                "frame_rate": frame_rate,
                "height": frame_height,
                "width": frame_width,
                "format": "yuv444p",
            }
        else:
            self.decode_config = {"frames_per_chunk": 1, "decoder": "h264", "format": "yuv444p"}

            self.encode_config = {
                "encoder": "libx264",
                "encoder_format": "yuv444p",
                "frame_rate": frame_rate,
                "height": frame_height,
                "width": frame_width,
                "format": "yuv444p",
            }
        src = source_face
        src, _ = self.detect_and_align(src, src_is=True)
        logger.info("start swapping")
        sr = StreamReader(target_video)
        if self.ffmpeg_device == "cpu":
            sr.add_basic_video_stream(**self.decode_config)
        else:
            sr.add_basic_video_stream(**self.decode_config)
            # sr.add_video_stream(**self.decode_config)
        sw = StreamWriter(self.swapped_video)
        sw.add_video_stream(**self.encode_config)
        with sw.open():
            for (chunk,) in sr.stream():
                # StreamReader cuda decode颜色格式默认为yuv需要转为rgb
                chunk = self.yuv_to_rgb(chunk)
                image = (chunk * 255).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
                align_img, warp_mat = self.detect_and_align(image)
                chunk = chunk.transpose(3, 2).transpose(2, 1).to(self.device)
                if align_img is None:
                    result_face = chunk
                else:
                    with torch.no_grad():
                        for _ in range(iterations):
                            swapped_face, m_r = self.model.forward(src, align_img, shape_rate, id_rate)
                            swapped_face = torch.clamp(swapped_face, 0, 1)
                            align_img = swapped_face
                        smooth_face_mask, _ = self.smooth_mask(m_r)
                    warp_mat = torch.from_numpy(warp_mat).float().unsqueeze(0)
                    inverse_warp_mat = inverse_transform_batch(warp_mat)
                    swapped_face, smooth_face_mask = self._geometry_transfrom_warp_affine(
                        swapped_face, inverse_warp_mat, self.frame_size, smooth_face_mask
                    )
                    result_face = (1 - smooth_face_mask) * chunk + smooth_face_mask * swapped_face
                result_face = self.rgb_to_yuv(result_face).to(self.ffmpeg_device)
                sw.write_video_chunk(0, result_face)

        # 将target_video中的音频转移到换脸视频上
        command = f"ffmpeg -loglevel error -i {self.swapped_video} -i {target_video} -c copy \
            -map 0 -map 1:1? -y -shortest {self.swapped_video_with_audio}"
        os.system(command)

        # 删除没有音频的换脸视频
        os.system(f"rm {self.swapped_video}")
        return self.swapped_video_with_audio


class ConfigPath:
    face_detector_weights = "/mnt/c/yangguo/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx"
    model_path = ""
    model_idx = 80000
    ffmpeg_device = "cuda"


def main():
    cfg = ConfigPath()
    parser = argparse.ArgumentParser(
        prog="benchmark", description="What the program does", epilog="Text at the bottom of help"
    )
    parser.add_argument("-m", "--model_path")
    parser.add_argument("-i", "--model_idx")
    parser.add_argument("-f", "--ffmpeg_device")

    args = parser.parse_args()

    cfg.model_path = args.model_path
    cfg.model_idx = int(args.model_idx)
    cfg.ffmpeg_device = args.ffmpeg_device

    infer = VideoSwap(cfg)

    def inference(source_face, target_video, shape_rate, id_rate):
        return infer.inference(source_face, target_video, shape_rate, id_rate)

    output = gr.Video(value=None, label="换脸结果")
    demo = gr.Interface(
        fn=inference,
        inputs=[
            gr.Image(shape=None, label="选脸图"),
            gr.Video(value=None, label="目标视频"),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=1.0,
                step=0.1,
                label="3d结构相似度(1.0表示完全替换)",
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=1.0,
                step=0.1,
                label="人脸特征相似度(1.0表示完全替换)",
            ),
        ],
        outputs=output,
        title="HiConFace视频人脸融合系统",
        description="v1.0: developed by yiwise CV group",
    )
    demo.launch(server_name="0.0.0.0", server_port=7860)


if __name__ == "__main__":
    main()