File size: 4,199 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import time
from pathlib import Path
from typing import Iterable
from typing import NamedTuple
from typing import Optional
from typing import Tuple

import cv2
import numpy as np
import torch
import torch.nn.functional as F
from skimage import transform as skt

from .scrfd_detect import SCRFD

# ---frontal
src = np.array(
    [
        [39.730, 51.138],
        [72.270, 51.138],
        [56.000, 68.493],
        [42.463, 87.010],
        [69.537, 87.010],
    ],
    dtype=np.float32,
)


class alignFace:
    def __init__(self) -> None:
        self.src_map = src

    def estimate_norm(self, lmk, image_size=112):
        assert lmk.shape == (5, 2)
        tform = skt.SimilarityTransform()
        src_ = self.src_map * image_size / 112
        tform.estimate(lmk, src_)
        M = tform.params[0:2, :]
        return M

    def align_face(
        self, img: np.ndarray, key_points: np.ndarray, crop_size: int
    ) -> Tuple[Iterable[np.ndarray], Iterable[np.ndarray]]:
        transform_matrix = self.estimate_norm(key_points, crop_size)
        align_img = cv2.warpAffine(img, transform_matrix, (crop_size, crop_size), borderValue=0.0)
        return align_img, transform_matrix


class Detection(NamedTuple):
    bbox: Optional[np.ndarray]
    score: Optional[np.ndarray]
    key_points: Optional[np.ndarray]


class FaceDetector:
    def __init__(
        self,
        model_path: Path,
        det_thresh: float = 0.5,
        det_size: Tuple[int, int] = (640, 640),
        mode: str = "None",
        device: str = "cuda",
    ):
        self.det_thresh = det_thresh
        self.mode = mode
        self.device = device
        self.handler = SCRFD(str(model_path), device=self.device, det_thresh=det_thresh)
        ctx_id = -1 if device == "cpu" else 0
        self.handler.prepare(ctx_id, input_size=det_size)

    def __call__(self, img: np.ndarray, max_num: int = 0) -> Detection:
        bboxes, kpss = self.handler.detect(img, max_num=max_num, metric="default")
        if bboxes.shape[0] == 0:
            return Detection(None, None, None)
        return Detection(bboxes[..., :-1], bboxes[..., -1], kpss)


def tensor2img(tensor):
    tensor = tensor.detach().cpu().numpy()
    img = tensor.transpose(0, 2, 3, 1)[0]
    img = np.clip(img * 255, 0.0, 255.0).astype(np.uint8)
    return img


def inverse_transform_batch(mat: torch.Tensor, device="cuda") -> torch.Tensor:
    # inverse the Affine transformation matrix
    inv_mat = torch.zeros_like(mat).to(device)
    div1 = mat[:, 0, 0] * mat[:, 1, 1] - mat[:, 0, 1] * mat[:, 1, 0]
    inv_mat[:, 0, 0] = mat[:, 1, 1] / div1
    inv_mat[:, 0, 1] = -mat[:, 0, 1] / div1
    inv_mat[:, 0, 2] = -(mat[:, 0, 2] * mat[:, 1, 1] - mat[:, 0, 1] * mat[:, 1, 2]) / div1
    div2 = mat[:, 0, 1] * mat[:, 1, 0] - mat[:, 0, 0] * mat[:, 1, 1]
    inv_mat[:, 1, 0] = mat[:, 1, 0] / div2
    inv_mat[:, 1, 1] = -mat[:, 0, 0] / div2
    inv_mat[:, 1, 2] = -(mat[:, 0, 2] * mat[:, 1, 0] - mat[:, 0, 0] * mat[:, 1, 2]) / div2
    return inv_mat


class SoftErosion(torch.nn.Module):
    def __init__(self, kernel_size: int = 15, threshold: float = 0.6, iterations: int = 1):
        super(SoftErosion, self).__init__()
        r = kernel_size // 2
        self.padding = r
        self.iterations = iterations
        self.threshold = threshold

        # Create kernel
        y_indices, x_indices = torch.meshgrid(torch.arange(0.0, kernel_size), torch.arange(0.0, kernel_size))
        dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
        kernel = dist.max() - dist
        kernel /= kernel.sum()
        kernel = kernel.view(1, 1, *kernel.shape)
        self.register_buffer("weight", kernel)

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        for i in range(self.iterations - 1):
            x = torch.min(
                x,
                F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding),
            )
        x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)

        mask = x >= self.threshold

        x[mask] = 1.0
        # add small epsilon to avoid Nans
        x[~mask] /= x[~mask].max() + 1e-7

        return x, mask