File size: 17,438 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import os
from typing import Dict
from typing import Optional
from typing import Tuple

import kornia
import lpips
import torch
import torch.nn as nn
import torch.nn.functional as F
from loguru import logger

from arcface_torch.backbones.iresnet import iresnet100
from configs.train_config import TrainConfig
from Deep3DFaceRecon_pytorch.models.bfm import ParametricFaceModel
from Deep3DFaceRecon_pytorch.models.networks import ReconNetWrapper
from HRNet.hrnet import HighResolutionNet
from models.discriminator import Discriminator
from models.gan_loss import GANLoss
from models.generator import Generator
from models.init_weight import init_net


class HifiFace:
    def __init__(
        self,
        identity_extractor_config,
        is_training=True,
        device="cpu",
        load_checkpoint: Optional[Tuple[str, int]] = None,
    ):
        super(HifiFace, self).__init__()
        self.generator = Generator(identity_extractor_config)
        self.is_training = is_training

        if self.is_training:
            self.lr = TrainConfig().lr
            self.use_ddp = TrainConfig().use_ddp
            self.grad_clip = TrainConfig().grad_clip if TrainConfig().grad_clip is not None else 100.0

            self.discriminator = init_net(Discriminator(3))

            self.l1_loss = nn.L1Loss()
            if TrainConfig().eye_hm_loss or TrainConfig().mouth_hm_loss:
                self.mse_loss = nn.MSELoss()
            self.loss_fn_vgg = lpips.LPIPS(net="vgg")
            self.adv_loss = GANLoss()

            # 3D人脸重建模型
            self.f_3d = ReconNetWrapper(net_recon="resnet50", use_last_fc=False)
            self.f_3d.load_state_dict(
                torch.load(identity_extractor_config["f_3d_checkpoint_path"], map_location="cpu")["net_recon"]
            )
            self.f_3d.eval()
            self.face_model = ParametricFaceModel(bfm_folder=identity_extractor_config["bfm_folder"])
            self.face_model.to("cpu")

            # 人脸识别模型
            self.f_id = iresnet100(pretrained=False, fp16=False)
            self.f_id.load_state_dict(torch.load(identity_extractor_config["f_id_checkpoint_path"], map_location="cpu"))
            self.f_id.eval()

            # mouth heatmap model
            if TrainConfig().mouth_hm_loss or TrainConfig().eye_hm_loss:
                self.model_mouth = HighResolutionNet()
                checkpoint = torch.load(identity_extractor_config["hrnet_path"], map_location="cpu")
                self.model_mouth.load_state_dict(checkpoint)
                self.model_mouth.eval()

            self.lambda_adv = 1
            self.lambda_seg = 100
            self.lambda_rec = 20
            self.lambda_cyc = 1
            self.lambda_lpips = 5

            self.lambda_shape = 0.5
            self.lambda_id = 5
            self.lambda_eye_hm = 10000.0
            self.lambda_mouth_hm = 10000.0

            self.dilation_kernel = torch.ones(5, 5)

        if load_checkpoint is not None:
            self.load(load_checkpoint[0], load_checkpoint[1])

        self.setup(device)

    def save(self, path, idx=None):
        os.makedirs(path, exist_ok=True)
        if idx is None:
            g_path = os.path.join(path, "generator.pth")
            d_path = os.path.join(path, "discriminator.pth")
        else:
            g_path = os.path.join(path, f"generator_{idx}.pth")
            d_path = os.path.join(path, f"discriminator_{idx}.pth")
        if self.use_ddp:
            torch.save(self.generator.module.state_dict(), g_path)
            torch.save(self.discriminator.module.state_dict(), d_path)
        else:
            torch.save(self.generator.state_dict(), g_path)
            torch.save(self.discriminator.state_dict(), d_path)

    def load(self, path, idx=None):
        if idx is None:
            g_path = os.path.join(path, "generator.pth")
            d_path = os.path.join(path, "discriminator.pth")
        else:
            g_path = os.path.join(path, f"generator_{idx}.pth")
            d_path = os.path.join(path, f"discriminator_{idx}.pth")
        logger.info(f"Loading generator from {g_path}")
        self.generator.load_state_dict(torch.load(g_path, map_location="cpu"))
        if self.is_training:
            logger.info(f"Loading discriminator from {d_path}")
            self.discriminator.load_state_dict(torch.load(d_path, map_location="cpu"))

    def setup(self, device):
        self.generator.to(device)

        if self.is_training:
            self.discriminator.to(device)
            self.l1_loss.to(device)
            if TrainConfig().eye_hm_loss or TrainConfig().mouth_hm_loss:
                self.mse_loss.to(device)
            self.f_3d.to(device)
            self.f_id.to(device)

            self.loss_fn_vgg.to(device)
            self.face_model.to(device)
            self.adv_loss.to(device)

            if TrainConfig().mouth_hm_loss or TrainConfig().eye_hm_loss:
                self.model_mouth.to(device)
            self.f_3d.requires_grad_(False)
            self.f_id.requires_grad_(False)
            self.loss_fn_vgg.requires_grad_(False)
            if TrainConfig().mouth_hm_loss or TrainConfig().eye_hm_loss:
                self.model_mouth.requires_grad_(False)
            self.dilation_kernel = self.dilation_kernel.to(device)
            if self.use_ddp:
                from torch.nn.parallel import DistributedDataParallel as DDP
                import torch.distributed as dist

                self.generator = DDP(self.generator, device_ids=[device])
                self.discriminator = DDP(self.discriminator, device_ids=[device])

                if dist.get_rank() == 0:
                    torch.save(self.generator.state_dict(), "/tmp/generator.pth")
                    torch.save(self.discriminator.state_dict(), "/tmp/discriminator.pth")

                dist.barrier()
                self.generator.load_state_dict(torch.load("/tmp/generator.pth", map_location=device))
                self.discriminator.load_state_dict(torch.load("/tmp/discriminator.pth", map_location=device))

            self.g_optimizer = torch.optim.AdamW(self.generator.parameters(), lr=self.lr, betas=[0, 0.999])
            self.d_optimizer = torch.optim.AdamW(self.discriminator.parameters(), lr=self.lr, betas=[0, 0.999])

    def train(self):
        self.generator.train()
        self.discriminator.train()
        # 整个id extractor是不训练的模块
        if self.use_ddp:
            self.generator.module.id_extractor.eval()
        else:
            self.generator.id_extractor.eval()

    def eval(self):
        self.generator.eval()
        if self.is_training:
            self.discriminator.eval()

    def train_forward_generator(self, source_img, target_img, target_mask, same_id_mask):
        """
        训练时候 Generator的loss计算
        Parameters:
        -----------
        source_img: torch.Tensor
        target_img: torch.Tensor
        target_mask: torch.Tensor, [B, 1, H, W]
        same_id_mask: torch.Tensor, [B, 1]

        Returns:
        --------
        source_img: torch.Tensor
        target_img: torch.Tensor
        i_cycle: torch.Tensor, cycle image
        i_r: torch.Tensor
        m_r: torch.Tensor
        loss: Dict[torch.Tensor], contain pairs of loss name and loss values
        """
        same = same_id_mask.unsqueeze(-1).unsqueeze(-1)
        i_r, i_low, m_r, m_low = self.generator(source_img, target_img, need_id_grad=False)
        i_cycle, _, _, _ = self.generator(target_img, i_r, need_id_grad=True)
        d_r = self.discriminator(i_r)

        # SID Loss: shape loss + id loss

        with torch.no_grad():
            c_s = self.f_3d(F.interpolate(source_img, size=224, mode="bilinear"))
            c_t = self.f_3d(F.interpolate(target_img, size=224, mode="bilinear"))
        c_r = self.f_3d(F.interpolate(i_r, size=224, mode="bilinear"))
        c_low = self.f_3d(F.interpolate(i_low, size=224, mode="bilinear"))
        with torch.no_grad():
            c_fuse = torch.cat((c_s[:, :80], c_t[:, 80:]), dim=1)
            _, _, _, q_fuse = self.face_model.compute_for_render(c_fuse)
        _, _, _, q_r = self.face_model.compute_for_render(c_r)
        _, _, _, q_low = self.face_model.compute_for_render(c_low)
        with torch.no_grad():
            v_id_i_s = F.normalize(
                self.f_id(F.interpolate((source_img - 0.5) / 0.5, size=112, mode="bicubic")), dim=-1, p=2
            )

        v_id_i_r = F.normalize(self.f_id(F.interpolate((i_r - 0.5) / 0.5, size=112, mode="bicubic")), dim=-1, p=2)
        v_id_i_low = F.normalize(self.f_id(F.interpolate((i_low - 0.5) / 0.5, size=112, mode="bicubic")), dim=-1, p=2)
        loss_shape = self.l1_loss(q_fuse, q_r) + self.l1_loss(q_fuse, q_low)
        loss_shape = torch.clamp(loss_shape, min=0.0, max=10.0)

        inner_product_r = torch.bmm(v_id_i_s.unsqueeze(1), v_id_i_r.unsqueeze(2)).squeeze()
        inner_product_low = torch.bmm(v_id_i_s.unsqueeze(1), v_id_i_low.unsqueeze(2)).squeeze()
        loss_id = self.l1_loss(torch.ones_like(inner_product_r), inner_product_r) + self.l1_loss(
            torch.ones_like(inner_product_low), inner_product_low
        )
        loss_sid = self.lambda_shape * loss_shape + self.lambda_id * loss_id

        # Realism Loss: segmentation loss + reconstruction loss + cycle loss + perceptual loss + adversarial loss

        loss_cycle = self.l1_loss(target_img, i_cycle)

        # dilate target mask
        target_mask = kornia.morphology.dilation(target_mask, self.dilation_kernel)

        loss_segmentation = self.l1_loss(
            F.interpolate(target_mask, scale_factor=0.25, mode="bilinear"), m_low
        ) + self.l1_loss(target_mask, m_r)

        loss_reconstruction = self.l1_loss(i_r * same, target_img * same) + self.l1_loss(
            i_low * same, F.interpolate(target_img, scale_factor=0.25, mode="bilinear") * same
        )

        loss_perceptual = self.loss_fn_vgg(target_img * same, i_r * same).mean()

        loss_adversarial = self.adv_loss(d_r, True, for_discriminator=False)

        loss_realism = (
            self.lambda_adv * loss_adversarial
            + self.lambda_seg * loss_segmentation
            + self.lambda_rec * loss_reconstruction
            + self.lambda_cyc * loss_cycle
            + self.lambda_lpips * loss_perceptual
        )

        # eye hm loss
        loss_eye_hm = 0
        # mouth hm loss
        loss_mouth_hm = 0
        if TrainConfig().eye_hm_loss or TrainConfig().mouth_hm_loss:
            target_hm = self.model_mouth(target_img)
            r_hm = self.model_mouth(i_r)

            if TrainConfig().eye_hm_loss:
                target_eye_hm = target_hm[:, 96:98, :, :]
                r_eye_hm = r_hm[:, 96:98, :, :]
                loss_eye_hm = self.mse_loss(r_eye_hm, target_eye_hm)
                loss_realism = loss_realism + self.lambda_eye_hm * loss_eye_hm

            if TrainConfig().mouth_hm_loss:
                target_mouth_hm = target_hm[:, 76:96, :, :]
                r_mouth_hm = r_hm[:, 76:96, :, :]
                loss_mouth_hm = self.mse_loss(r_mouth_hm, target_mouth_hm)
                loss_realism = loss_realism + self.lambda_mouth_hm * loss_mouth_hm

        loss_generator = loss_sid + loss_realism

        loss_dict = {
            "loss_shape": loss_shape,
            "loss_id": loss_id,
            "loss_sid": loss_sid,
            "loss_cycle": loss_cycle,
            "loss_segmentation": loss_segmentation,
            "loss_reconstruction": loss_reconstruction,
            "loss_perceptual": loss_perceptual,
            "loss_adversarial": loss_adversarial,
            "loss_realism": loss_realism,
            "loss_generator": loss_generator,
        }
        if TrainConfig().eye_hm_loss:
            loss_dict.update({"loss_eye_hm": loss_eye_hm})
        if TrainConfig().mouth_hm_loss:
            loss_dict.update({"loss_mouth_hm": loss_mouth_hm})
        return (
            source_img,
            target_img,
            i_cycle.detach(),
            i_r.detach(),
            m_r.detach(),
            loss_dict,
        )

    def train_forward_discriminator(self, target_img, i_r):
        """
        训练时候 Discriminator的loss计算
        Parameters:
        -----------
        target_img: torch.Tensor, 目标脸图片
        i_r: torch.Tensor, 换脸结果

        Returns:
        --------
        Dict[str]: contains pair of loss name and loss values
        """
        d_gt = self.discriminator(target_img)
        d_fake = self.discriminator(i_r.detach())
        loss_real = self.adv_loss(d_gt, True)
        loss_fake = self.adv_loss(d_fake, False)

        # alpha = torch.rand(target_img.shape[0], 1, 1, 1).to(target_img.device)
        # x_hat = (alpha * target_img.data + (1 - alpha) * i_r.data).requires_grad_(True)
        # out = self.discriminator(x_hat)
        # loss_gp = gradient_penalty(out, x_hat)

        loss_discriminator = loss_real + loss_fake  # + 10 * loss_gp
        return {
            "loss_real": loss_real,
            "loss_fake": loss_fake,
            # "loss_gp": loss_gp,
            "loss_discriminator": loss_discriminator,
        }

    def forward(
        self, source_img: torch.Tensor, target_img: torch.Tensor, shape_rate=None, id_rate=None
    ) -> torch.Tensor:
        """
        Parameters:
        -----------
        source_img: torch.Tensor, source face 图像
        target_img: torch.Tensor, target face 图像
        *_rate: 插值系数
        Returns:
        --------
        i_r: torch.Tensor, swapped result
        """
        if shape_rate is None and id_rate is None:
            i_r, _, m_r, _ = self.generator(source_img, target_img)
        else:
            if shape_rate is None:
                shape_rate = 1.0
            if id_rate is None:
                id_rate = 1.0
            i_r, _, m_r, _ = self.generator.interp(source_img, target_img, shape_rate, id_rate)
        return i_r, m_r

    def optimize(
        self,
        source_img: torch.Tensor,
        target_img: torch.Tensor,
        target_mask: torch.Tensor,
        same_id_mask: torch.Tensor,
    ) -> Tuple[Dict, Dict[str, torch.Tensor]]:
        """
        模型的optimize
        训练模式下执行一次训练,并返回loss信息和结果
        Parameters:
        -----------
        source_img: torch.Tensor, source face 图像
        target_img: torch.Tensor, target face 图像
        target_mask: torch.Tensor, target face mask
        same_id_mask: torch.Tensor, same id mask, 标识source 和 target是否是同个人

        Returns:
        --------
        Tuple[Dict, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        loss_dict, source_img, target_img, m_r(预测的mask), i_r(换脸结果)
        """
        src_img, tgt_img, i_cycle, i_r, m_r, loss_G_dict = self.train_forward_generator(
            source_img, target_img, target_mask, same_id_mask
        )
        loss_G = loss_G_dict["loss_generator"]
        self.g_optimizer.zero_grad()
        loss_G.backward()
        global_norm_G = torch.nn.utils.clip_grad_norm_(self.generator.parameters(), self.grad_clip)
        self.g_optimizer.step()

        loss_D_dict = self.train_forward_discriminator(tgt_img, i_r)
        loss_D = loss_D_dict["loss_discriminator"]
        self.d_optimizer.zero_grad()
        loss_D.backward()
        global_norm_D = torch.nn.utils.clip_grad_norm_(self.discriminator.parameters(), self.grad_clip)
        self.d_optimizer.step()

        total_loss_dict = {"global_norm_G": global_norm_G, "global_norm_D": global_norm_D}
        total_loss_dict.update(loss_G_dict)
        total_loss_dict.update(loss_D_dict)

        return total_loss_dict, {
            "source face": src_img,
            "target face": tgt_img,
            "swapped face": torch.clamp(i_r, min=0.0, max=1.0),
            "pred face mask": m_r,
            "cycle face": i_cycle,
        }


if __name__ == "__main__":
    import torch
    import cv2
    from configs.train_config import TrainConfig

    identity_extractor_config = TrainConfig().identity_extractor_config

    model = HifiFace(identity_extractor_config, is_training=True)

    # src = cv2.imread("/home/xuehongyang/data/test1.jpg")
    # tgt = cv2.imread("/home/xuehongyang/data/test2.jpg")
    # src = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)
    # tgt = cv2.cvtColor(tgt, cv2.COLOR_BGR2RGB)
    # src = cv2.resize(src, (256, 256))
    # tgt = cv2.resize(tgt, (256, 256))
    # src = src.transpose(2, 0, 1)[None, ...]
    # tgt = tgt.transpose(2, 0, 1)[None, ...]
    # source_img = torch.from_numpy(src).float() / 255.0
    # target_img = torch.from_numpy(tgt).float() / 255.0
    # same_id_mask = torch.Tensor([1]).unsqueeze(0)
    # tgt_mask = target_img[:, 0, :, :].unsqueeze(1)
    # if torch.cuda.is_available():
    #     model.to("cuda:3")
    #     source_img = source_img.to("cuda:3")
    #     target_img = target_img.to("cuda:3")
    #     tgt_mask = tgt_mask.to("cuda:3")
    #     same_id_mask = same_id_mask.to("cuda:3")
    #     source_img = source_img.repeat(16, 1, 1, 1)
    #     target_img = target_img.repeat(16, 1, 1, 1)
    #     tgt_mask = tgt_mask.repeat(16, 1, 1, 1)
    #     same_id_mask = same_id_mask.repeat(16, 1)
    # while True:
    #     x = model.optimize(source_img, target_img, tgt_mask, same_id_mask)
    #     print(x[0]["loss_generator"])