Spaces:
Build error
Build error
| # -*- coding: utf-8 -*- | |
| """ | |
| @File : scrfd | |
| @Description: scrfd人脸检测 | |
| @Author: Yang Jian | |
| @Contact: lian01110@outlook.com | |
| @Time: 2022/2/25 10:31 | |
| @IDE: PYTHON | |
| @REFERENCE: https://github.com/yangjian1218 | |
| """ | |
| from __future__ import division | |
| import datetime | |
| import os | |
| import os.path as osp | |
| import sys | |
| import cv2 | |
| import numpy as np | |
| import onnx | |
| import onnxruntime | |
| from cv2 import KeyPoint | |
| # import face_align | |
| def softmax(z): | |
| assert len(z.shape) == 2 | |
| s = np.max(z, axis=1) | |
| s = s[:, np.newaxis] # necessary step to do broadcasting | |
| e_x = np.exp(z - s) | |
| div = np.sum(e_x, axis=1) | |
| div = div[:, np.newaxis] # dito | |
| return e_x / div | |
| def distance2bbox(points, distance, max_shape=None): | |
| """Decode distance prediction to bounding box. | |
| Args: | |
| points (Tensor): Shape (n, 2), [x, y]. | |
| distance (Tensor): Distance from the given point to 4 | |
| boundaries (left, top, right, bottom). | |
| max_shape (tuple): Shape of the image. | |
| Returns: | |
| Tensor: Decoded bboxes. | |
| """ | |
| x1 = points[:, 0] - distance[:, 0] | |
| y1 = points[:, 1] - distance[:, 1] | |
| x2 = points[:, 0] + distance[:, 2] | |
| y2 = points[:, 1] + distance[:, 3] | |
| if max_shape is not None: | |
| x1 = x1.clamp(min=0, max=max_shape[1]) | |
| y1 = y1.clamp(min=0, max=max_shape[0]) | |
| x2 = x2.clamp(min=0, max=max_shape[1]) | |
| y2 = y2.clamp(min=0, max=max_shape[0]) | |
| return np.stack([x1, y1, x2, y2], axis=-1) | |
| def distance2kps(points, distance, max_shape=None): | |
| """Decode distance prediction to bounding box. | |
| Args: | |
| points (Tensor): Shape (n, 2), [x, y]. | |
| distance (Tensor): Distance from the given point to 4 | |
| boundaries (left, top, right, bottom). | |
| max_shape (tuple): Shape of the image. | |
| Returns: | |
| Tensor: Decoded bboxes. | |
| """ | |
| preds = [] | |
| for i in range(0, distance.shape[1], 2): | |
| px = points[:, i % 2] + distance[:, i] | |
| py = points[:, i % 2 + 1] + distance[:, i + 1] | |
| if max_shape is not None: | |
| px = px.clamp(min=0, max=max_shape[1]) | |
| py = py.clamp(min=0, max=max_shape[0]) | |
| preds.append(px) | |
| preds.append(py) | |
| return np.stack(preds, axis=-1) | |
| class SCRFD: | |
| def __init__(self, model_file=None, session=None, device="cuda", det_thresh=0.5): | |
| self.model_file = model_file | |
| self.session = session | |
| self.taskname = "detection" | |
| if self.session is None: | |
| assert self.model_file is not None | |
| assert osp.exists(self.model_file) | |
| if device == "cpu": | |
| providers = ["CPUExecutionProvider"] | |
| else: | |
| providers = ["CUDAExecutionProvider"] | |
| self.session = onnxruntime.InferenceSession(self.model_file, providers=providers) | |
| self.center_cache = {} | |
| self.nms_thresh = 0.4 | |
| self.det_thresh = det_thresh | |
| self._init_vars() | |
| def _init_vars(self): | |
| input_cfg = self.session.get_inputs()[0] | |
| input_shape = input_cfg.shape | |
| # print("input_shape:",input_shape) | |
| if isinstance(input_shape[2], str): | |
| self.input_size = None | |
| else: | |
| self.input_size = tuple(input_shape[2:4][::-1]) | |
| # print('image_size:', self.image_size) | |
| input_name = input_cfg.name | |
| self.input_shape = input_shape | |
| outputs = self.session.get_outputs() | |
| output_names = [] | |
| for o in outputs: | |
| output_names.append(o.name) | |
| self.input_name = input_name | |
| self.output_names = output_names | |
| # print("input_name:",self.input_name) | |
| # print("output_name:",self.output_names) | |
| self.input_mean = 127.5 | |
| self.input_std = 127.5 | |
| # assert len(outputs)==10 or len(outputs)==15 | |
| self.use_kps = False | |
| self._anchor_ratio = 1.0 | |
| self._num_anchors = 1 | |
| if len(outputs) == 6: | |
| self.fmc = 3 | |
| self._feat_stride_fpn = [8, 16, 32] | |
| self._num_anchors = 2 | |
| elif len(outputs) == 9: | |
| self.fmc = 3 | |
| self._feat_stride_fpn = [8, 16, 32] | |
| self._num_anchors = 2 | |
| self.use_kps = True | |
| elif len(outputs) == 10: | |
| self.fmc = 5 | |
| self._feat_stride_fpn = [8, 16, 32, 64, 128] | |
| self._num_anchors = 1 | |
| elif len(outputs) == 15: | |
| self.fmc = 5 | |
| self._feat_stride_fpn = [8, 16, 32, 64, 128] | |
| self._num_anchors = 1 | |
| self.use_kps = True | |
| def init_det_threshold(self, det_threshold): | |
| """ | |
| 单独设置人脸检测阈值 | |
| :param det_threshold: 人脸检测阈值 | |
| :return: | |
| """ | |
| self.det_thresh = det_threshold | |
| def prepare(self, ctx_id, **kwargs): | |
| if ctx_id < 0: | |
| self.session.set_providers(["CPUExecutionProvider"]) | |
| nms_threshold = kwargs.get("nms_threshold", None) | |
| if nms_threshold is not None: | |
| self.nms_threshold = nms_threshold | |
| input_size = kwargs.get("input_size", None) | |
| if input_size is not None: | |
| if self.input_size is not None: | |
| print("warning: det_size is already set in scrfd model, ignore") | |
| else: | |
| self.input_size = input_size | |
| def forward(self, img, threshold=0.6, swap_rb=True): | |
| scores_list = [] | |
| bboxes_list = [] | |
| kpss_list = [] | |
| input_size = tuple(img.shape[0:2][::-1]) | |
| # print('input_size:',input_size) | |
| blob = cv2.dnn.blobFromImages( | |
| [img], 1.0 / self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=swap_rb | |
| ) | |
| net_outs = self.session.run(self.output_names, {self.input_name: blob}) | |
| # print("net_outs:::",net_outs[0]) | |
| input_height = blob.shape[2] | |
| input_width = blob.shape[3] | |
| fmc = self.fmc # 3 | |
| for idx, stride in enumerate(self._feat_stride_fpn): | |
| scores = net_outs[idx] | |
| # print("scores:",scores) | |
| bbox_preds = net_outs[idx + fmc] | |
| bbox_preds = bbox_preds * stride | |
| if self.use_kps: | |
| kps_preds = net_outs[idx + fmc * 2] * stride | |
| height = input_height // stride | |
| width = input_width // stride | |
| K = height * width | |
| key = (height, width, stride) | |
| if key in self.center_cache: | |
| anchor_centers = self.center_cache[key] | |
| else: | |
| # solution-1, c style: | |
| # anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 ) | |
| # for i in range(height): | |
| # anchor_centers[i, :, 1] = i | |
| # for i in range(width): | |
| # anchor_centers[:, i, 0] = i | |
| # solution-2: | |
| # ax = np.arange(width, dtype=np.float32) | |
| # ay = np.arange(height, dtype=np.float32) | |
| # xv, yv = np.meshgrid(np.arange(width), np.arange(height)) | |
| # anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32) | |
| # solution-3: | |
| anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) | |
| # print(anchor_centers.shape) | |
| anchor_centers = (anchor_centers * stride).reshape((-1, 2)) | |
| if self._num_anchors > 1: | |
| anchor_centers = np.stack([anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2)) | |
| if len(self.center_cache) < 100: | |
| self.center_cache[key] = anchor_centers | |
| # print(anchor_centers.shape,bbox_preds.shape,scores.shape,kps_preds.shape) | |
| pos_inds = np.where(scores >= threshold)[0] | |
| # print("pos_inds:",pos_inds) | |
| bboxes = distance2bbox(anchor_centers, bbox_preds) | |
| pos_scores = scores[pos_inds] | |
| pos_bboxes = bboxes[pos_inds] | |
| scores_list.append(pos_scores) | |
| bboxes_list.append(pos_bboxes) | |
| if self.use_kps: | |
| kpss = distance2kps(anchor_centers, kps_preds) | |
| # kpss = kps_preds | |
| kpss = kpss.reshape((kpss.shape[0], -1, 2)) | |
| pos_kpss = kpss[pos_inds] | |
| kpss_list.append(pos_kpss) | |
| # print("....:",bboxes_list) | |
| return scores_list, bboxes_list, kpss_list | |
| def detect(self, img, input_size=None, max_num=0, det_thresh=None, metric="default", swap_rb=True): | |
| """ | |
| :param img: 原始图像 | |
| :param input_size: 输入尺寸,元组或者列表 | |
| :param max_num: 返回人脸数量, 如果为0,表示所有, | |
| :param det_thresh: 人脸检测阈值, | |
| :param metric: 排序方式,默认为面积+中心偏移, "max"为面积最大排序 | |
| :param swap_rb: 是否进行r b通道转换, 如果传入的是bgr格式图片,则需要为True | |
| :return: | |
| """ | |
| assert input_size is not None or self.input_size is not None | |
| input_size = self.input_size if input_size is None else input_size | |
| # resize方法选择,缩小选择cv2.INTER_AREA , 放大选择cv2.INTER_LINEAR | |
| resize_interpolation = cv2.INTER_AREA if img.shape[0] >= input_size[0] else cv2.INTER_LINEAR | |
| im_ratio = float(img.shape[0]) / img.shape[1] | |
| model_ratio = float(input_size[1]) / input_size[0] | |
| if im_ratio > model_ratio: | |
| new_height = input_size[1] | |
| new_width = int(new_height / im_ratio) | |
| else: | |
| new_width = input_size[0] | |
| new_height = int(new_width * im_ratio) | |
| det_scale = float(new_height) / img.shape[0] | |
| resized_img = cv2.resize(img, (new_width, new_height), interpolation=resize_interpolation) | |
| det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8) | |
| det_img[:new_height, :new_width, :] = resized_img | |
| if det_thresh == None: | |
| det_thresh = self.det_thresh | |
| scores_list, bboxes_list, kpss_list = self.forward(det_img, det_thresh, swap_rb) | |
| # print("====",len(scores_list),len(bboxes_list),len(kpss_list)) | |
| # print("scores_list:",scores_list) | |
| scores = np.vstack(scores_list) | |
| scores_ravel = scores.ravel() | |
| order = scores_ravel.argsort()[::-1] | |
| bboxes = np.vstack(bboxes_list) / det_scale | |
| if self.use_kps: | |
| kpss = np.vstack(kpss_list) / det_scale | |
| pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) | |
| pre_det = pre_det[order, :] | |
| keep = self.nms(pre_det) | |
| det = pre_det[keep, :] | |
| if self.use_kps: | |
| kpss = kpss[order, :, :] | |
| kpss = kpss[keep, :, :] | |
| else: | |
| kpss = None | |
| if max_num > 0 and det.shape[0] > max_num: | |
| area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) | |
| img_center = img.shape[0] // 2, img.shape[1] // 2 | |
| offsets = np.vstack( | |
| [(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]] | |
| ) | |
| offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) | |
| if metric == "max": | |
| values = area | |
| else: | |
| values = area - offset_dist_squared * 2.0 # some extra weight on the centering | |
| bindex = np.argsort(values)[::-1] # some extra weight on the centering | |
| bindex = bindex[0:max_num] | |
| det = det[bindex, :] | |
| if kpss is not None: | |
| kpss = kpss[bindex, :] | |
| return det, kpss | |
| def nms(self, dets): | |
| thresh = self.nms_thresh | |
| x1 = dets[:, 0] | |
| y1 = dets[:, 1] | |
| x2 = dets[:, 2] | |
| y2 = dets[:, 3] | |
| scores = dets[:, 4] | |
| areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
| order = scores.argsort()[::-1] | |
| keep = [] | |
| while order.size > 0: | |
| i = order[0] | |
| keep.append(i) | |
| xx1 = np.maximum(x1[i], x1[order[1:]]) | |
| yy1 = np.maximum(y1[i], y1[order[1:]]) | |
| xx2 = np.minimum(x2[i], x2[order[1:]]) | |
| yy2 = np.minimum(y2[i], y2[order[1:]]) | |
| w = np.maximum(0.0, xx2 - xx1 + 1) | |
| h = np.maximum(0.0, yy2 - yy1 + 1) | |
| inter = w * h | |
| ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
| inds = np.where(ovr <= thresh)[0] | |
| order = order[inds + 1] | |
| return keep | |
| if __name__ == "__main__": | |
| detector = SCRFD( | |
| model_file="/mnt/c/yangguo/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx", device="cpu" | |
| ) | |
| # detector.prepare() | |
| img_path = "/mnt/c/yangguo/hififace_infer/src_image/boy.jpg" | |
| img = cv2.imread(img_path) | |
| ta = datetime.datetime.now() | |
| cycle = 100 | |
| # for i in range(cycle): | |
| bboxes, kpss = detector.detect(img, input_size=(640, 640)) # 得到box跟关键点 | |
| # print("bboxes:",bboxes,"\nkpss:",kpss) | |
| tb = datetime.datetime.now() | |
| print("all cost:", (tb - ta).total_seconds() * 1000) | |
| print(img_path, bboxes.shape) | |
| if kpss is not None: | |
| print(kpss.shape) | |
| # todo 画图 | |
| for i in range(bboxes.shape[0]): | |
| bbox = bboxes[i] | |
| x1, y1, x2, y2, score = bbox.astype(np.int32) | |
| cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2) | |
| if kpss is not None: | |
| kps = kpss[i] | |
| for kp in kps: | |
| kp = kp.astype(np.int32) | |
| cv2.circle(img, tuple(kp), 1, (0, 0, 255), 2) | |
| # cv2.namedWindow("img", 2) | |
| cv2.imwrite("./img.jpg", img) | |
| # cv2.imshow("img", img) | |
| # cv2.waitKey(0) | |