xuehongyang
ser
83d8d3c
# -*- coding: utf-8 -*-
"""
@File : scrfd
@Description: scrfd人脸检测
@Author: Yang Jian
@Contact: lian01110@outlook.com
@Time: 2022/2/25 10:31
@IDE: PYTHON
@REFERENCE: https://github.com/yangjian1218
"""
from __future__ import division
import datetime
import os
import os.path as osp
import sys
import cv2
import numpy as np
import onnx
import onnxruntime
from cv2 import KeyPoint
# import face_align
def softmax(z):
assert len(z.shape) == 2
s = np.max(z, axis=1)
s = s[:, np.newaxis] # necessary step to do broadcasting
e_x = np.exp(z - s)
div = np.sum(e_x, axis=1)
div = div[:, np.newaxis] # dito
return e_x / div
def distance2bbox(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = x1.clamp(min=0, max=max_shape[1])
y1 = y1.clamp(min=0, max=max_shape[0])
x2 = x2.clamp(min=0, max=max_shape[1])
y2 = y2.clamp(min=0, max=max_shape[0])
return np.stack([x1, y1, x2, y2], axis=-1)
def distance2kps(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
preds = []
for i in range(0, distance.shape[1], 2):
px = points[:, i % 2] + distance[:, i]
py = points[:, i % 2 + 1] + distance[:, i + 1]
if max_shape is not None:
px = px.clamp(min=0, max=max_shape[1])
py = py.clamp(min=0, max=max_shape[0])
preds.append(px)
preds.append(py)
return np.stack(preds, axis=-1)
class SCRFD:
def __init__(self, model_file=None, session=None, device="cuda", det_thresh=0.5):
self.model_file = model_file
self.session = session
self.taskname = "detection"
if self.session is None:
assert self.model_file is not None
assert osp.exists(self.model_file)
if device == "cpu":
providers = ["CPUExecutionProvider"]
else:
providers = ["CUDAExecutionProvider"]
self.session = onnxruntime.InferenceSession(self.model_file, providers=providers)
self.center_cache = {}
self.nms_thresh = 0.4
self.det_thresh = det_thresh
self._init_vars()
def _init_vars(self):
input_cfg = self.session.get_inputs()[0]
input_shape = input_cfg.shape
# print("input_shape:",input_shape)
if isinstance(input_shape[2], str):
self.input_size = None
else:
self.input_size = tuple(input_shape[2:4][::-1])
# print('image_size:', self.image_size)
input_name = input_cfg.name
self.input_shape = input_shape
outputs = self.session.get_outputs()
output_names = []
for o in outputs:
output_names.append(o.name)
self.input_name = input_name
self.output_names = output_names
# print("input_name:",self.input_name)
# print("output_name:",self.output_names)
self.input_mean = 127.5
self.input_std = 127.5
# assert len(outputs)==10 or len(outputs)==15
self.use_kps = False
self._anchor_ratio = 1.0
self._num_anchors = 1
if len(outputs) == 6:
self.fmc = 3
self._feat_stride_fpn = [8, 16, 32]
self._num_anchors = 2
elif len(outputs) == 9:
self.fmc = 3
self._feat_stride_fpn = [8, 16, 32]
self._num_anchors = 2
self.use_kps = True
elif len(outputs) == 10:
self.fmc = 5
self._feat_stride_fpn = [8, 16, 32, 64, 128]
self._num_anchors = 1
elif len(outputs) == 15:
self.fmc = 5
self._feat_stride_fpn = [8, 16, 32, 64, 128]
self._num_anchors = 1
self.use_kps = True
def init_det_threshold(self, det_threshold):
"""
单独设置人脸检测阈值
:param det_threshold: 人脸检测阈值
:return:
"""
self.det_thresh = det_threshold
def prepare(self, ctx_id, **kwargs):
if ctx_id < 0:
self.session.set_providers(["CPUExecutionProvider"])
nms_threshold = kwargs.get("nms_threshold", None)
if nms_threshold is not None:
self.nms_threshold = nms_threshold
input_size = kwargs.get("input_size", None)
if input_size is not None:
if self.input_size is not None:
print("warning: det_size is already set in scrfd model, ignore")
else:
self.input_size = input_size
def forward(self, img, threshold=0.6, swap_rb=True):
scores_list = []
bboxes_list = []
kpss_list = []
input_size = tuple(img.shape[0:2][::-1])
# print('input_size:',input_size)
blob = cv2.dnn.blobFromImages(
[img], 1.0 / self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=swap_rb
)
net_outs = self.session.run(self.output_names, {self.input_name: blob})
# print("net_outs:::",net_outs[0])
input_height = blob.shape[2]
input_width = blob.shape[3]
fmc = self.fmc # 3
for idx, stride in enumerate(self._feat_stride_fpn):
scores = net_outs[idx]
# print("scores:",scores)
bbox_preds = net_outs[idx + fmc]
bbox_preds = bbox_preds * stride
if self.use_kps:
kps_preds = net_outs[idx + fmc * 2] * stride
height = input_height // stride
width = input_width // stride
K = height * width
key = (height, width, stride)
if key in self.center_cache:
anchor_centers = self.center_cache[key]
else:
# solution-1, c style:
# anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
# for i in range(height):
# anchor_centers[i, :, 1] = i
# for i in range(width):
# anchor_centers[:, i, 0] = i
# solution-2:
# ax = np.arange(width, dtype=np.float32)
# ay = np.arange(height, dtype=np.float32)
# xv, yv = np.meshgrid(np.arange(width), np.arange(height))
# anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
# solution-3:
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
# print(anchor_centers.shape)
anchor_centers = (anchor_centers * stride).reshape((-1, 2))
if self._num_anchors > 1:
anchor_centers = np.stack([anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2))
if len(self.center_cache) < 100:
self.center_cache[key] = anchor_centers
# print(anchor_centers.shape,bbox_preds.shape,scores.shape,kps_preds.shape)
pos_inds = np.where(scores >= threshold)[0]
# print("pos_inds:",pos_inds)
bboxes = distance2bbox(anchor_centers, bbox_preds)
pos_scores = scores[pos_inds]
pos_bboxes = bboxes[pos_inds]
scores_list.append(pos_scores)
bboxes_list.append(pos_bboxes)
if self.use_kps:
kpss = distance2kps(anchor_centers, kps_preds)
# kpss = kps_preds
kpss = kpss.reshape((kpss.shape[0], -1, 2))
pos_kpss = kpss[pos_inds]
kpss_list.append(pos_kpss)
# print("....:",bboxes_list)
return scores_list, bboxes_list, kpss_list
def detect(self, img, input_size=None, max_num=0, det_thresh=None, metric="default", swap_rb=True):
"""
:param img: 原始图像
:param input_size: 输入尺寸,元组或者列表
:param max_num: 返回人脸数量, 如果为0,表示所有,
:param det_thresh: 人脸检测阈值,
:param metric: 排序方式,默认为面积+中心偏移, "max"为面积最大排序
:param swap_rb: 是否进行r b通道转换, 如果传入的是bgr格式图片,则需要为True
:return:
"""
assert input_size is not None or self.input_size is not None
input_size = self.input_size if input_size is None else input_size
# resize方法选择,缩小选择cv2.INTER_AREA , 放大选择cv2.INTER_LINEAR
resize_interpolation = cv2.INTER_AREA if img.shape[0] >= input_size[0] else cv2.INTER_LINEAR
im_ratio = float(img.shape[0]) / img.shape[1]
model_ratio = float(input_size[1]) / input_size[0]
if im_ratio > model_ratio:
new_height = input_size[1]
new_width = int(new_height / im_ratio)
else:
new_width = input_size[0]
new_height = int(new_width * im_ratio)
det_scale = float(new_height) / img.shape[0]
resized_img = cv2.resize(img, (new_width, new_height), interpolation=resize_interpolation)
det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8)
det_img[:new_height, :new_width, :] = resized_img
if det_thresh == None:
det_thresh = self.det_thresh
scores_list, bboxes_list, kpss_list = self.forward(det_img, det_thresh, swap_rb)
# print("====",len(scores_list),len(bboxes_list),len(kpss_list))
# print("scores_list:",scores_list)
scores = np.vstack(scores_list)
scores_ravel = scores.ravel()
order = scores_ravel.argsort()[::-1]
bboxes = np.vstack(bboxes_list) / det_scale
if self.use_kps:
kpss = np.vstack(kpss_list) / det_scale
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
pre_det = pre_det[order, :]
keep = self.nms(pre_det)
det = pre_det[keep, :]
if self.use_kps:
kpss = kpss[order, :, :]
kpss = kpss[keep, :, :]
else:
kpss = None
if max_num > 0 and det.shape[0] > max_num:
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
img_center = img.shape[0] // 2, img.shape[1] // 2
offsets = np.vstack(
[(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]]
)
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
if metric == "max":
values = area
else:
values = area - offset_dist_squared * 2.0 # some extra weight on the centering
bindex = np.argsort(values)[::-1] # some extra weight on the centering
bindex = bindex[0:max_num]
det = det[bindex, :]
if kpss is not None:
kpss = kpss[bindex, :]
return det, kpss
def nms(self, dets):
thresh = self.nms_thresh
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
if __name__ == "__main__":
detector = SCRFD(
model_file="/mnt/c/yangguo/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx", device="cpu"
)
# detector.prepare()
img_path = "/mnt/c/yangguo/hififace_infer/src_image/boy.jpg"
img = cv2.imread(img_path)
ta = datetime.datetime.now()
cycle = 100
# for i in range(cycle):
bboxes, kpss = detector.detect(img, input_size=(640, 640)) # 得到box跟关键点
# print("bboxes:",bboxes,"\nkpss:",kpss)
tb = datetime.datetime.now()
print("all cost:", (tb - ta).total_seconds() * 1000)
print(img_path, bboxes.shape)
if kpss is not None:
print(kpss.shape)
# todo 画图
for i in range(bboxes.shape[0]):
bbox = bboxes[i]
x1, y1, x2, y2, score = bbox.astype(np.int32)
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
if kpss is not None:
kps = kpss[i]
for kp in kps:
kp = kp.astype(np.int32)
cv2.circle(img, tuple(kp), 1, (0, 0, 255), 2)
# cv2.namedWindow("img", 2)
cv2.imwrite("./img.jpg", img)
# cv2.imshow("img", img)
# cv2.waitKey(0)