"""This script contains the training options for Deep3DFaceRecon_pytorch """ from util import util from .base_options import BaseOptions class TrainOptions(BaseOptions): """This class includes training options. It also includes shared options defined in BaseOptions. """ def initialize(self, parser): parser = BaseOptions.initialize(self, parser) # dataset parameters # for train parser.add_argument("--data_root", type=str, default="./", help="dataset root") parser.add_argument( "--flist", type=str, default="datalist/train/masks.txt", help="list of mask names of training set" ) parser.add_argument("--batch_size", type=int, default=32) parser.add_argument( "--dataset_mode", type=str, default="flist", help="chooses how datasets are loaded. [None | flist]" ) parser.add_argument( "--serial_batches", action="store_true", help="if true, takes images in order to make batches, otherwise takes them randomly", ) parser.add_argument("--num_threads", default=4, type=int, help="# threads for loading data") parser.add_argument( "--max_dataset_size", type=int, default=float("inf"), help="Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.", ) parser.add_argument( "--preprocess", type=str, default="shift_scale_rot_flip", help="scaling and cropping of images at load time [shift_scale_rot_flip | shift_scale | shift | shift_rot_flip ]", ) parser.add_argument( "--use_aug", type=util.str2bool, nargs="?", const=True, default=True, help="whether use data augmentation" ) # for val parser.add_argument( "--flist_val", type=str, default="datalist/val/masks.txt", help="list of mask names of val set" ) parser.add_argument("--batch_size_val", type=int, default=32) # visualization parameters parser.add_argument( "--display_freq", type=int, default=1000, help="frequency of showing training results on screen" ) parser.add_argument( "--print_freq", type=int, default=100, help="frequency of showing training results on console" ) # network saving and loading parameters parser.add_argument("--save_latest_freq", type=int, default=5000, help="frequency of saving the latest results") parser.add_argument( "--save_epoch_freq", type=int, default=1, help="frequency of saving checkpoints at the end of epochs" ) parser.add_argument("--evaluation_freq", type=int, default=5000, help="evaluation freq") parser.add_argument("--save_by_iter", action="store_true", help="whether saves model by iteration") parser.add_argument("--continue_train", action="store_true", help="continue training: load the latest model") parser.add_argument( "--epoch_count", type=int, default=1, help="the starting epoch count, we save the model by , +, ...", ) parser.add_argument("--phase", type=str, default="train", help="train, val, test, etc") parser.add_argument("--pretrained_name", type=str, default=None, help="resume training from another checkpoint") # training parameters parser.add_argument("--n_epochs", type=int, default=20, help="number of epochs with the initial learning rate") parser.add_argument("--lr", type=float, default=0.0001, help="initial learning rate for adam") parser.add_argument( "--lr_policy", type=str, default="step", help="learning rate policy. [linear | step | plateau | cosine]" ) parser.add_argument( "--lr_decay_epochs", type=int, default=10, help="multiply by a gamma every lr_decay_epochs epoches" ) self.isTrain = True return parser