import logging import torch import torch.nn as nn import torch.nn.functional as F BatchNorm2d = nn.BatchNorm2d BN_MOMENTUM = 0.01 logger = logging.getLogger(__name__) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class HighResolutionModule(nn.Module): def __init__( self, num_branches, blocks, num_blocks, num_inchannels, num_channels, fuse_method, multi_scale_output=True ): super(HighResolutionModule, self).__init__() # self._check_branches( # num_branches, blocks, num_blocks, num_inchannels, num_channels) self.num_inchannels = num_inchannels self.fuse_method = fuse_method self.num_branches = num_branches self.multi_scale_output = multi_scale_output self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) self.fuse_layers = self._make_fuse_layers() self.relu = nn.ReLU(inplace=True) # def _check_branches(self, num_branches, blocks, num_blocks, # num_inchannels, num_channels): # if num_branches != len(num_blocks): # error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( # num_branches, len(num_blocks)) # logger.error(error_msg) # raise ValueError(error_msg) # if num_branches != len(num_channels): # error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( # num_branches, len(num_channels)) # logger.error(error_msg) # raise ValueError(error_msg) # if num_branches != len(num_inchannels): # error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( # num_branches, len(num_inchannels)) # logger.error(error_msg) # raise ValueError(error_msg) def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): downsample = None if stride != 1 or self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: downsample = nn.Sequential( nn.Conv2d( self.num_inchannels[branch_index], num_channels[branch_index] * block.expansion, kernel_size=1, stride=stride, bias=False, ), BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM), ) layers = [] layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample)) self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion for i in range(1, num_blocks[branch_index]): layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index])) return nn.Sequential(*layers) def _make_branches(self, num_branches, block, num_blocks, num_channels): branches = [] for i in range(num_branches): branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) return nn.ModuleList(branches) def _make_fuse_layers(self): if self.num_branches == 1: return None num_branches = self.num_branches num_inchannels = self.num_inchannels fuse_layers = [] for i in range(num_branches if self.multi_scale_output else 1): fuse_layer = [] for j in range(num_branches): if j > i: fuse_layer.append( nn.Sequential( nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False), BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM), ) ) # nn.Upsample(scale_factor=2**(j-i), mode='nearest'))) elif j == i: fuse_layer.append(None) else: conv3x3s = [] for k in range(i - j): if k == i - j - 1: num_outchannels_conv3x3 = num_inchannels[i] conv3x3s.append( nn.Sequential( nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM), ) ) else: num_outchannels_conv3x3 = num_inchannels[j] conv3x3s.append( nn.Sequential( nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM), nn.ReLU(inplace=True), ) ) fuse_layer.append(nn.Sequential(*conv3x3s)) fuse_layers.append(nn.ModuleList(fuse_layer)) return nn.ModuleList(fuse_layers) def get_num_inchannels(self): return self.num_inchannels def forward(self, x): if self.num_branches == 1: return [self.branches[0](x[0])] for i in range(self.num_branches): x[i] = self.branches[i](x[i]) x_fuse = [] for i in range(len(self.fuse_layers)): y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) for j in range(1, self.num_branches): if i == j: y = y + x[j] elif j > i: y = y + F.interpolate( self.fuse_layers[i][j](x[j]), size=[x[i].shape[2], x[i].shape[3]], mode="bilinear" ) else: y = y + self.fuse_layers[i][j](x[j]) x_fuse.append(self.relu(y)) return x_fuse blocks_dict = {"BASIC": BasicBlock, "BOTTLENECK": Bottleneck} class HighResolutionNet(nn.Module): def __init__( self, ): self.inplanes = 64 super(HighResolutionNet, self).__init__() # stem net self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.sf = nn.Softmax(dim=1) self.layer1 = self._make_layer(Bottleneck, 64, 64, 4) num_channels = [18, 36] block = blocks_dict["BASIC"] num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] self.transition1 = self._make_transition_layer([256], num_channels) config_list = [1, 2, [4, 4], [18, 36], "BASIC", "SUM"] self.stage2, pre_stage_channels = self._make_stage(config_list, num_channels) num_channels = [18, 36, 72] block = blocks_dict["BASIC"] num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) config_list = [4, 3, [4, 4, 4], [18, 36, 72], "BASIC", "SUM"] self.stage3, pre_stage_channels = self._make_stage(config_list, num_channels) num_channels = [18, 36, 72, 144] block = blocks_dict["BASIC"] num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) config_list = [3, 4, [4, 4, 4, 4], [18, 36, 72, 144], "BASIC", "SUM"] self.stage4, pre_stage_channels = self._make_stage(config_list, num_channels, multi_scale_output=True) final_inp_channels = sum(pre_stage_channels) self.head = nn.Sequential( nn.Conv2d( in_channels=final_inp_channels, out_channels=final_inp_channels, kernel_size=1, stride=1, padding=0 ), BatchNorm2d(final_inp_channels, momentum=BN_MOMENTUM), nn.ReLU(inplace=True), nn.Conv2d(in_channels=final_inp_channels, out_channels=98, kernel_size=1, stride=1, padding=0), ) def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): num_branches_cur = len(num_channels_cur_layer) num_branches_pre = len(num_channels_pre_layer) transition_layers = [] for i in range(num_branches_cur): if i < num_branches_pre: if num_channels_cur_layer[i] != num_channels_pre_layer[i]: transition_layers.append( nn.Sequential( nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), BatchNorm2d(num_channels_cur_layer[i], momentum=BN_MOMENTUM), nn.ReLU(inplace=True), ) ) else: transition_layers.append(None) else: conv3x3s = [] for j in range(i + 1 - num_branches_pre): inchannels = num_channels_pre_layer[-1] outchannels = num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels conv3x3s.append( nn.Sequential( nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False), BatchNorm2d(outchannels, momentum=BN_MOMENTUM), nn.ReLU(inplace=True), ) ) transition_layers.append(nn.Sequential(*conv3x3s)) return nn.ModuleList(transition_layers) def _make_layer(self, block, inplanes, planes, blocks, stride=1): downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), ) layers = [] layers.append(block(inplanes, planes, stride, downsample)) inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(inplanes, planes)) return nn.Sequential(*layers) def _make_stage(self, config_list, num_inchannels, multi_scale_output=True): num_modules = config_list[0] num_branches = config_list[1] num_blocks = config_list[2] num_channels = config_list[3] block = blocks_dict[config_list[4]] fuse_method = config_list[5] modules = [] for i in range(num_modules): # multi_scale_output is only used last module if not multi_scale_output and i == num_modules - 1: reset_multi_scale_output = False else: reset_multi_scale_output = True modules.append( HighResolutionModule( num_branches, block, num_blocks, num_inchannels, num_channels, fuse_method, reset_multi_scale_output ) ) num_inchannels = modules[-1].get_num_inchannels() return nn.Sequential(*modules), num_inchannels def forward(self, x): # h, w = x.size(2), x.size(3) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.layer1(x) x_list = [] for i in range(2): if self.transition1[i] is not None: x_list.append(self.transition1[i](x)) else: x_list.append(x) y_list = self.stage2(x_list) x_list = [] for i in range(3): if self.transition2[i] is not None: x_list.append(self.transition2[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage3(x_list) x_list = [] for i in range(4): if self.transition3[i] is not None: x_list.append(self.transition3[i](y_list[-1])) else: x_list.append(y_list[i]) x = self.stage4(x_list) # Head Part height, width = x[0].size(2), x[0].size(3) x1 = F.interpolate(x[1], size=(height, width), mode="bilinear", align_corners=False) x2 = F.interpolate(x[2], size=(height, width), mode="bilinear", align_corners=False) x3 = F.interpolate(x[3], size=(height, width), mode="bilinear", align_corners=False) x = torch.cat([x[0], x1, x2, x3], 1) x = self.head(x) return x