Spaces:
Runtime error
Runtime error
| import math | |
| import random | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import CrossEntropyLoss | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| Seq2SeqLMOutput, | |
| Seq2SeqModelOutput, | |
| ) | |
| from transformers.models.bart.configuration_bart import BartConfig | |
| from transformers.models.bart.modeling_bart import ( | |
| BartDecoder, | |
| BartEncoderLayer, | |
| BartForConditionalGeneration, | |
| BartLearnedPositionalEmbedding, | |
| BartModel, | |
| BartPretrainedModel, | |
| _expand_mask, | |
| shift_tokens_right, | |
| ) | |
| from transformers.utils import logging | |
| from .modeling_outputs import EnClapBartOutput | |
| logger = logging.get_logger(__name__) | |
| class EnClapBartConfig(BartConfig): | |
| def __init__( | |
| self, | |
| d_clap: int = 512, | |
| num_rvq: int = 16, | |
| encodec_vocab_size: int = 1024, | |
| encodec_pad_token_id: int = 1024, | |
| mcm_loss_scale: float = 0.7, | |
| label_smoothing: float = 0.2, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.d_clap = d_clap | |
| self.num_rvq = num_rvq | |
| self.encodec_vocab_size = encodec_vocab_size | |
| self.encodec_pad_token_id = encodec_pad_token_id | |
| self.mcm_loss_scale = mcm_loss_scale | |
| self.label_smoothing = label_smoothing | |
| class EnClapBartEncoder(BartPretrainedModel): | |
| """ | |
| Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
| [`BartEncoderLayer`]. | |
| Args: | |
| config: BartConfig | |
| embed_tokens (nn.Embedding): output embedding | |
| """ | |
| def __init__( | |
| self, config: EnClapBartConfig, embed_tokens: Optional[nn.Embedding] = None | |
| ): | |
| super().__init__(config) | |
| self.dropout = config.dropout | |
| self.layerdrop = config.encoder_layerdrop | |
| clap_dim = config.d_clap | |
| embed_dim = config.d_model | |
| self.padding_idx = config.pad_token_id | |
| self.max_source_positions = config.max_position_embeddings | |
| self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
| self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) | |
| if embed_tokens is not None: | |
| self.embed_tokens.weight = embed_tokens.weight | |
| self.embed_encodec = nn.ModuleList( | |
| [ | |
| nn.Embedding( | |
| math.ceil((config.encodec_vocab_size + 1) / 64) * 64, | |
| config.d_model, | |
| padding_idx=config.encodec_pad_token_id, | |
| ) | |
| for _ in range(config.num_rvq) | |
| ] | |
| ) | |
| self.clap_projection = nn.Linear(clap_dim, embed_dim) | |
| self.embed_positions = BartLearnedPositionalEmbedding( | |
| config.max_position_embeddings, | |
| embed_dim, | |
| ) | |
| self.layers = nn.ModuleList( | |
| [BartEncoderLayer(config) for _ in range(config.encoder_layers)] | |
| ) | |
| self.layernorm_embedding = nn.LayerNorm(embed_dim) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| clap_embedding: Optional[torch.Tensor] = None, | |
| encodec_mask: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError( | |
| "You cannot specify both input_ids and inputs_embeds at the same time" | |
| ) | |
| elif input_ids is not None: | |
| if input_ids.ndim == 2: # This is effectively just input = input_ids | |
| input = input_ids | |
| input_ids = input_ids.view(-1, input_ids.shape[-1]) | |
| elif inputs_embeds is not None: | |
| input = inputs_embeds[:, :, -1] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if inputs_embeds is None: | |
| if input_ids.ndim == 2: | |
| inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale | |
| elif input_ids.ndim == 3: | |
| encodec_ids = torch.where(encodec_mask.unsqueeze(-1) > 0, input_ids, 0) | |
| encodec_embeds = torch.zeros( | |
| input_ids.shape[0], input_ids.shape[1], self.config.d_model | |
| ).to(self.device) | |
| for i, embed in enumerate(self.embed_encodec): | |
| encodec_embeds = encodec_embeds + embed(encodec_ids[..., i]) | |
| bart_ids = torch.where(encodec_mask == 0, input_ids[..., 0], 0) | |
| bart_embeds = self.embed_tokens(bart_ids) | |
| input_embeds = torch.where( | |
| encodec_mask.unsqueeze(-1) > 0, encodec_embeds, bart_embeds | |
| ) | |
| # Get CLAP embedding | |
| if clap_embedding is not None: | |
| clap_embedding = self.clap_projection(clap_embedding) | |
| input_embeds[:, 0] = clap_embedding | |
| inputs_embeds = input_embeds.to(self.device) | |
| batch_size = input_ids.size(0) | |
| embed_pos = self.embed_positions(input_ids).to(self.device) | |
| embed_pos = torch.cat( | |
| [ | |
| torch.zeros(batch_size, 1, self.config.d_model).to(self.device), | |
| embed_pos[:, :-1], | |
| ], | |
| dim=1, | |
| ) | |
| hidden_states = inputs_embeds + embed_pos | |
| hidden_states = self.layernorm_embedding(hidden_states) | |
| hidden_states = nn.functional.dropout( | |
| hidden_states, p=self.dropout, training=self.training | |
| ) | |
| # expand attention_mask | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| # check if head_mask has a correct number of layers specified if desired | |
| if head_mask is not None: | |
| if head_mask.size()[0] != (len(self.layers)): | |
| raise ValueError( | |
| f"The head_mask should be specified for {len(self.layers)} layers, but it is for" | |
| f" {head_mask.size()[0]}." | |
| ) | |
| for idx, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| dropout_probability = random.uniform(0, 1) | |
| if self.training and ( | |
| dropout_probability < self.layerdrop | |
| ): # skip the layer | |
| layer_outputs = (None, None) | |
| else: | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(encoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| (head_mask[idx] if head_mask is not None else None), | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask=( | |
| head_mask[idx] if head_mask is not None else None | |
| ), | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, encoder_states, all_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=encoder_states, | |
| attentions=all_attentions, | |
| ) | |
| class EnClapBartModel(BartModel): | |
| def __init__(self, config: EnClapBartConfig): | |
| super(BartModel, self).__init__(config) | |
| padding_idx, vocab_size = config.pad_token_id, config.vocab_size | |
| self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) | |
| self.encoder = EnClapBartEncoder(config, self.shared) | |
| self.decoder = BartDecoder(config, self.shared) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| clap_embedding: Optional[torch.Tensor] = None, | |
| encodec_mask: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| decoder_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, Seq2SeqModelOutput]: | |
| # different to other models, Bart automatically creates decoder_input_ids from | |
| # input_ids if no decoder_input_ids are provided | |
| if decoder_input_ids is None and decoder_inputs_embeds is None: | |
| if input_ids is None: | |
| raise ValueError( | |
| "If no `decoder_input_ids` or `decoder_inputs_embeds` are " | |
| "passed, `input_ids` cannot be `None`. Please pass either " | |
| "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | |
| ) | |
| decoder_input_ids = shift_tokens_right( | |
| input_ids, self.config.pad_token_id, self.config.decoder_start_token_id | |
| ) | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| if encoder_outputs is None: | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| clap_embedding=clap_embedding, | |
| encodec_mask=encodec_mask, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
| ) | |
| # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| encoder_hidden_states=encoder_outputs[0], | |
| encoder_attention_mask=attention_mask, | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| if not return_dict: | |
| return decoder_outputs + encoder_outputs | |
| return Seq2SeqModelOutput( | |
| last_hidden_state=decoder_outputs.last_hidden_state, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| class EnClapBartForConditionalGeneration(BartForConditionalGeneration): | |
| config_class = EnClapBartConfig | |
| def __init__(self, config: EnClapBartConfig): | |
| super(BartForConditionalGeneration, self).__init__(config) | |
| self.model = EnClapBartModel(config) | |
| self.register_buffer( | |
| "final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)) | |
| ) | |
| self.lm_head = nn.Linear( | |
| config.d_model, self.model.shared.num_embeddings, bias=False | |
| ) | |
| self.mcm_heads = nn.ModuleList( | |
| [ | |
| nn.Linear(config.d_model, config.encodec_vocab_size) | |
| for _ in range(config.num_rvq) | |
| ] | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| clap_embedding: Optional[torch.Tensor] = None, | |
| encodec_mask: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| decoder_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| mcm_labels: Optional[List[torch.LongTensor]] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, Seq2SeqLMOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
| config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
| (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| Returns: | |
| """ | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| if labels is not None: | |
| if use_cache: | |
| logger.warning( | |
| "The `use_cache` argument is changed to `False` since `labels` is provided." | |
| ) | |
| use_cache = False | |
| if decoder_input_ids is None and decoder_inputs_embeds is None: | |
| decoder_input_ids = shift_tokens_right( | |
| labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
| ) | |
| outputs = self.model( | |
| input_ids, | |
| clap_embedding=clap_embedding, | |
| encodec_mask=encodec_mask, | |
| attention_mask=attention_mask, | |
| decoder_input_ids=decoder_input_ids, | |
| encoder_outputs=encoder_outputs, | |
| decoder_attention_mask=decoder_attention_mask, | |
| head_mask=head_mask, | |
| decoder_head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| decoder_inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| mcm_loss = None | |
| if mcm_labels is not None: | |
| mcm_loss = 0.0 | |
| loss_fct = CrossEntropyLoss() | |
| for i, mcm_head in enumerate(self.mcm_heads): | |
| mcm_logits = mcm_head(outputs.encoder_last_hidden_state) | |
| loss_scale = 1 / 2 ** (i + 1) | |
| loss = loss_fct( | |
| mcm_logits.view(-1, self.config.encodec_vocab_size), | |
| mcm_labels[..., i].reshape(-1), | |
| ) | |
| mcm_loss = mcm_loss + loss * loss_scale | |
| lm_logits = self.lm_head(outputs[0]) | |
| lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device) | |
| masked_lm_loss = None | |
| if labels is not None: | |
| labels = labels.to(lm_logits.device) | |
| loss_fct = CrossEntropyLoss(label_smoothing=self.config.label_smoothing) | |
| masked_lm_loss = loss_fct( | |
| lm_logits.view(-1, self.config.vocab_size), labels.view(-1) | |
| ) | |
| loss = None | |
| if mcm_loss is None: | |
| loss = masked_lm_loss | |
| elif masked_lm_loss is None: | |
| loss = mcm_loss | |
| else: | |
| mcm_loss = mcm_loss * self.config.mcm_loss_scale | |
| loss = masked_lm_loss + mcm_loss | |
| if not return_dict: | |
| output = (lm_logits,) + outputs[1:] | |
| return ( | |
| ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
| ) | |
| return EnClapBartOutput( | |
| loss=loss, | |
| lm_loss=masked_lm_loss, | |
| mcm_loss=mcm_loss, | |
| logits=lm_logits, | |
| past_key_values=outputs.past_key_values, | |
| decoder_hidden_states=outputs.decoder_hidden_states, | |
| decoder_attentions=outputs.decoder_attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
| encoder_hidden_states=outputs.encoder_hidden_states, | |
| encoder_attentions=outputs.encoder_attentions, | |
| ) | |