Spaces:
Sleeping
Sleeping
staswrs
commited on
Commit
·
b5ef988
1
Parent(s):
b2a27a7
🔥 add generate settings
Browse files
app.py
CHANGED
|
@@ -1,111 +1,3 @@
|
|
| 1 |
-
# import os
|
| 2 |
-
# import subprocess
|
| 3 |
-
|
| 4 |
-
# # 🧹 Убираем pyenv, если вдруг остался .python-version
|
| 5 |
-
# os.environ.pop("PYENV_VERSION", None)
|
| 6 |
-
|
| 7 |
-
# # ⚙️ Устанавливаем torch и diso
|
| 8 |
-
# subprocess.run(["pip", "install", "torch", "wheel"], check=True)
|
| 9 |
-
|
| 10 |
-
# subprocess.run([
|
| 11 |
-
# "pip", "install", "--no-build-isolation",
|
| 12 |
-
# "diso@git+https://github.com/SarahWeiii/diso.git"
|
| 13 |
-
# ], check=True)
|
| 14 |
-
|
| 15 |
-
# # ✅ Только теперь импортируем всё остальное
|
| 16 |
-
# import gradio as gr
|
| 17 |
-
# import uuid
|
| 18 |
-
# import torch
|
| 19 |
-
# import zipfile
|
| 20 |
-
# import requests
|
| 21 |
-
|
| 22 |
-
# from inference_triposg import run_triposg
|
| 23 |
-
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 24 |
-
# from briarmbg import BriaRMBG
|
| 25 |
-
|
| 26 |
-
# # === Настройки устройства ===
|
| 27 |
-
# # device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
-
# # dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 29 |
-
# # dtype = torch.float32
|
| 30 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
-
# dtype = torch.float16 if device == "cuda" else torch.float32
|
| 32 |
-
|
| 33 |
-
# # === Проверка и загрузка весов ===
|
| 34 |
-
# weights_dir = "pretrained_weights"
|
| 35 |
-
# triposg_path = os.path.join(weights_dir, "TripoSG")
|
| 36 |
-
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
|
| 37 |
-
|
| 38 |
-
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
|
| 39 |
-
# print("📦 Downloading pretrained weights from Hugging Face Dataset...")
|
| 40 |
-
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
|
| 41 |
-
# zip_path = "pretrained_models.zip"
|
| 42 |
-
|
| 43 |
-
# with requests.get(url, stream=True) as r:
|
| 44 |
-
# r.raise_for_status()
|
| 45 |
-
# with open(zip_path, "wb") as f:
|
| 46 |
-
# for chunk in r.iter_content(chunk_size=8192):
|
| 47 |
-
# f.write(chunk)
|
| 48 |
-
|
| 49 |
-
# print("📦 Extracting weights...")
|
| 50 |
-
# with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
| 51 |
-
# zip_ref.extractall(weights_dir)
|
| 52 |
-
|
| 53 |
-
# os.remove(zip_path)
|
| 54 |
-
# print("✅ Weights ready.")
|
| 55 |
-
|
| 56 |
-
# # === Загрузка моделей ===
|
| 57 |
-
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
|
| 58 |
-
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
| 59 |
-
# rmbg_net.eval()
|
| 60 |
-
|
| 61 |
-
# # === Функция генерации ===
|
| 62 |
-
# def generate(file):
|
| 63 |
-
# temp_id = str(uuid.uuid4())
|
| 64 |
-
# input_path = f"/tmp/{temp_id}.png"
|
| 65 |
-
# output_path = f"/tmp/{temp_id}.glb"
|
| 66 |
-
|
| 67 |
-
# with open(input_path, "wb") as f:
|
| 68 |
-
# f.write(file)
|
| 69 |
-
|
| 70 |
-
# print("[DEBUG] Generating mesh...")
|
| 71 |
-
# try:
|
| 72 |
-
# mesh = run_triposg(
|
| 73 |
-
# pipe=pipe,
|
| 74 |
-
# image_input=input_path,
|
| 75 |
-
# rmbg_net=rmbg_net,
|
| 76 |
-
# seed=42,
|
| 77 |
-
# num_inference_steps=25,
|
| 78 |
-
# guidance_scale=5.0,
|
| 79 |
-
# faces=-1,
|
| 80 |
-
# )
|
| 81 |
-
# # mesh.export(output_path)
|
| 82 |
-
# if mesh is None:
|
| 83 |
-
# raise ValueError("Mesh generation failed")
|
| 84 |
-
# mesh.export(output_path)
|
| 85 |
-
# print(f"[DEBUG] Mesh saved to {output_path}")
|
| 86 |
-
# # return output_path
|
| 87 |
-
# if os.path.exists(output_path):
|
| 88 |
-
# return output_path
|
| 89 |
-
# else:
|
| 90 |
-
# return "Error: mesh export failed or file not found"
|
| 91 |
-
# except Exception as e:
|
| 92 |
-
# print("[ERROR]", e)
|
| 93 |
-
# return f"Error: {e}"
|
| 94 |
-
|
| 95 |
-
# # === Gradio-интерфейс ===
|
| 96 |
-
# demo = gr.Interface(
|
| 97 |
-
# fn=generate,
|
| 98 |
-
# inputs=gr.File(type="binary", label="Upload image"),
|
| 99 |
-
# outputs=gr.File(label="Generated .glb model"),
|
| 100 |
-
# title="TripoSG Image-to-3D",
|
| 101 |
-
# description="Upload an image and get back a 3D GLB model.",
|
| 102 |
-
# )
|
| 103 |
-
|
| 104 |
-
# # # === ВАЖНО: переменная должна называться `app` ===
|
| 105 |
-
# # app = demo.launch(inline=True, share=False, prevent_thread_lock=True)
|
| 106 |
-
# demo.launch()
|
| 107 |
-
|
| 108 |
-
|
| 109 |
|
| 110 |
|
| 111 |
import os
|
|
@@ -166,7 +58,8 @@ rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
|
| 166 |
rmbg_net.eval()
|
| 167 |
|
| 168 |
# Генерация .glb
|
| 169 |
-
def generate(image_path):
|
|
|
|
| 170 |
print("[API CALL] image_path received:", image_path)
|
| 171 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
| 172 |
|
|
@@ -176,14 +69,23 @@ def generate(image_path):
|
|
| 176 |
print("[DEBUG] Generating mesh from:", image_path)
|
| 177 |
|
| 178 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
mesh = run_triposg(
|
| 180 |
pipe=pipe,
|
| 181 |
image_input=image_path,
|
| 182 |
rmbg_net=rmbg_net,
|
| 183 |
seed=42,
|
| 184 |
-
num_inference_steps=
|
| 185 |
-
guidance_scale=
|
| 186 |
-
faces
|
| 187 |
)
|
| 188 |
|
| 189 |
if mesh is None:
|
|
@@ -217,33 +119,3 @@ demo.launch()
|
|
| 217 |
|
| 218 |
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
# import gradio as gr
|
| 223 |
-
# import uuid
|
| 224 |
-
# import os
|
| 225 |
-
# import traceback
|
| 226 |
-
|
| 227 |
-
# def generate(image_path):
|
| 228 |
-
# try:
|
| 229 |
-
# print("[DEBUG] got image path:", image_path)
|
| 230 |
-
# print("[DEBUG] file exists:", os.path.exists(image_path))
|
| 231 |
-
|
| 232 |
-
# out_path = f"/tmp/{uuid.uuid4()}.txt"
|
| 233 |
-
# with open(out_path, "w") as f:
|
| 234 |
-
# f.write(f"Received: {image_path}")
|
| 235 |
-
|
| 236 |
-
# return out_path
|
| 237 |
-
|
| 238 |
-
# except Exception as e:
|
| 239 |
-
# print("[ERROR]", e)
|
| 240 |
-
# traceback.print_exc()
|
| 241 |
-
# return f"Error: {e}"
|
| 242 |
-
|
| 243 |
-
# demo = gr.Interface(
|
| 244 |
-
# fn=generate,
|
| 245 |
-
# inputs=gr.Image(type="filepath"),
|
| 246 |
-
# outputs=gr.File()
|
| 247 |
-
# )
|
| 248 |
-
|
| 249 |
-
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
|
| 3 |
import os
|
|
|
|
| 58 |
rmbg_net.eval()
|
| 59 |
|
| 60 |
# Генерация .glb
|
| 61 |
+
# def generate(image_path):
|
| 62 |
+
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 63 |
print("[API CALL] image_path received:", image_path)
|
| 64 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
| 65 |
|
|
|
|
| 69 |
print("[DEBUG] Generating mesh from:", image_path)
|
| 70 |
|
| 71 |
try:
|
| 72 |
+
# mesh = run_triposg(
|
| 73 |
+
# pipe=pipe,
|
| 74 |
+
# image_input=image_path,
|
| 75 |
+
# rmbg_net=rmbg_net,
|
| 76 |
+
# seed=42,
|
| 77 |
+
# num_inference_steps=25,
|
| 78 |
+
# guidance_scale=5.0,
|
| 79 |
+
# faces=-1,
|
| 80 |
+
# )
|
| 81 |
mesh = run_triposg(
|
| 82 |
pipe=pipe,
|
| 83 |
image_input=image_path,
|
| 84 |
rmbg_net=rmbg_net,
|
| 85 |
seed=42,
|
| 86 |
+
num_inference_steps=int(num_steps),
|
| 87 |
+
guidance_scale=float(guidance_scale),
|
| 88 |
+
faces=int(face_number),
|
| 89 |
)
|
| 90 |
|
| 91 |
if mesh is None:
|
|
|
|
| 119 |
|
| 120 |
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|