Spaces:
Sleeping
Sleeping
staswrs
commited on
Commit
·
e28dbf7
1
Parent(s):
ecfd160
add octree depth controls
Browse files- app.py +12 -2
- app_backlog.py +191 -46
- inference_triposg.py +2 -0
app.py
CHANGED
|
@@ -67,7 +67,9 @@ rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
|
| 67 |
rmbg_net.eval()
|
| 68 |
|
| 69 |
|
| 70 |
-
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
|
|
|
|
|
| 71 |
print("[API CALL] image_path received:", image_path)
|
| 72 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
| 73 |
|
|
@@ -84,6 +86,7 @@ def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
| 84 |
num_inference_steps=int(num_steps),
|
| 85 |
guidance_scale=float(guidance_scale),
|
| 86 |
faces=int(face_number),
|
|
|
|
| 87 |
)
|
| 88 |
|
| 89 |
if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
|
@@ -125,7 +128,14 @@ def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
| 125 |
# Интерфейс Gradio
|
| 126 |
demo = gr.Interface(
|
| 127 |
fn=generate,
|
| 128 |
-
inputs=gr.Image(type="filepath", label="Upload image"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
outputs=gr.File(label="Download .glb"),
|
| 130 |
title="TripoSG Image to 3D",
|
| 131 |
description="Upload an image to generate a 3D model (.glb)",
|
|
|
|
| 67 |
rmbg_net.eval()
|
| 68 |
|
| 69 |
|
| 70 |
+
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 71 |
+
def generate(image_path, face_number=50000, octree_depth=9, guidance_scale=5.0, num_steps=25):
|
| 72 |
+
print(f"[INPUT] octree_depth={octree_depth}, face_number={face_number}, guidance_scale={guidance_scale}, num_steps={num_steps}")# 👈 добавлено
|
| 73 |
print("[API CALL] image_path received:", image_path)
|
| 74 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
| 75 |
|
|
|
|
| 86 |
num_inference_steps=int(num_steps),
|
| 87 |
guidance_scale=float(guidance_scale),
|
| 88 |
faces=int(face_number),
|
| 89 |
+
octree_depth=int(octree_depth), # 👈 добавлено
|
| 90 |
)
|
| 91 |
|
| 92 |
if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
|
|
|
| 128 |
# Интерфейс Gradio
|
| 129 |
demo = gr.Interface(
|
| 130 |
fn=generate,
|
| 131 |
+
# inputs=gr.Image(type="filepath", label="Upload image"),
|
| 132 |
+
inputs=[
|
| 133 |
+
gr.Image(type="filepath", label="Upload image"),
|
| 134 |
+
gr.Slider(10000, 150000, step=10000, value=50000, label="Face count"),
|
| 135 |
+
gr.Slider(6, 10, step=1, value=9, label="Octree Depth"),
|
| 136 |
+
gr.Slider(1.0, 10.0, step=0.5, value=5.0, label="Guidance Scale"),
|
| 137 |
+
gr.Slider(10, 100, step=5, value=25, label="Steps"),
|
| 138 |
+
], # 👈 добавлено
|
| 139 |
outputs=gr.File(label="Download .glb"),
|
| 140 |
title="TripoSG Image to 3D",
|
| 141 |
description="Upload an image to generate a 3D model (.glb)",
|
app_backlog.py
CHANGED
|
@@ -302,6 +302,192 @@
|
|
| 302 |
|
| 303 |
|
| 304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
import os
|
| 306 |
import subprocess
|
| 307 |
|
|
@@ -324,12 +510,15 @@ import requests
|
|
| 324 |
import traceback
|
| 325 |
import trimesh
|
| 326 |
import numpy as np
|
|
|
|
|
|
|
| 327 |
from trimesh.exchange.gltf import export_glb
|
| 328 |
|
| 329 |
from inference_triposg import run_triposg
|
| 330 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 331 |
from briarmbg import BriaRMBG
|
| 332 |
|
|
|
|
| 333 |
|
| 334 |
print("Trimesh version:", trimesh.__version__)
|
| 335 |
|
|
@@ -365,51 +554,6 @@ pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
|
|
| 365 |
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
| 366 |
rmbg_net.eval()
|
| 367 |
|
| 368 |
-
# Генерация .glb
|
| 369 |
-
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 370 |
-
# print("[API CALL] image_path received:", image_path)
|
| 371 |
-
# print("[API CALL] File exists:", os.path.exists(image_path))
|
| 372 |
-
|
| 373 |
-
# temp_id = str(uuid.uuid4())
|
| 374 |
-
# output_path = f"/tmp/{temp_id}.glb"
|
| 375 |
-
# print("[DEBUG] Generating mesh from:", image_path)
|
| 376 |
-
|
| 377 |
-
# try:
|
| 378 |
-
# mesh = run_triposg(
|
| 379 |
-
# pipe=pipe,
|
| 380 |
-
# image_input=image_path,
|
| 381 |
-
# rmbg_net=rmbg_net,
|
| 382 |
-
# seed=42,
|
| 383 |
-
# num_inference_steps=int(num_steps),
|
| 384 |
-
# guidance_scale=float(guidance_scale),
|
| 385 |
-
# faces=int(face_number),
|
| 386 |
-
# )
|
| 387 |
-
|
| 388 |
-
# if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
| 389 |
-
# raise ValueError("Mesh generation returned an empty mesh")
|
| 390 |
-
|
| 391 |
-
# mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
|
| 392 |
-
# mesh.rezero()
|
| 393 |
-
# mesh.fix_normals()
|
| 394 |
-
# mesh.apply_translation(-mesh.center_mass)
|
| 395 |
-
|
| 396 |
-
# # Масштабируем, чтобы модель вписывалась в размер 1x1x1
|
| 397 |
-
# # Если нужно будет подгонять под размер в Endless Tools, то можно использовать:
|
| 398 |
-
# # scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1))
|
| 399 |
-
# # mesh.apply_scale(scale_factor)
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
# glb_data = mesh.export(file_type='glb')
|
| 403 |
-
# with open(output_path, "wb") as f:
|
| 404 |
-
# f.write(glb_data)
|
| 405 |
-
|
| 406 |
-
# print(f"[DEBUG] Mesh saved to {output_path}")
|
| 407 |
-
# return output_path if os.path.exists(output_path) else None
|
| 408 |
-
|
| 409 |
-
# except Exception as e:
|
| 410 |
-
# print("[ERROR]", e)
|
| 411 |
-
# traceback.print_exc()
|
| 412 |
-
# return f"Error: {e}"
|
| 413 |
|
| 414 |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 415 |
print("[API CALL] image_path received:", image_path)
|
|
@@ -452,7 +596,6 @@ def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
| 452 |
else:
|
| 453 |
print("[DEBUG] Normals missing.")
|
| 454 |
|
| 455 |
-
|
| 456 |
# 💾 Сохраняем GLB
|
| 457 |
glb_data = mesh.export(file_type='glb')
|
| 458 |
with open(output_path, "wb") as f:
|
|
@@ -476,5 +619,7 @@ demo = gr.Interface(
|
|
| 476 |
description="Upload an image to generate a 3D model (.glb)",
|
| 477 |
)
|
| 478 |
|
|
|
|
|
|
|
| 479 |
# Запуск
|
| 480 |
demo.launch()
|
|
|
|
| 302 |
|
| 303 |
|
| 304 |
|
| 305 |
+
# import os
|
| 306 |
+
# import subprocess
|
| 307 |
+
|
| 308 |
+
# # Убираем pyenv
|
| 309 |
+
# os.environ.pop("PYENV_VERSION", None)
|
| 310 |
+
|
| 311 |
+
# # Установка зависимостей
|
| 312 |
+
# subprocess.run(["pip", "install", "torch", "wheel"], check=True)
|
| 313 |
+
# subprocess.run([
|
| 314 |
+
# "pip", "install", "--no-build-isolation",
|
| 315 |
+
# "diso@git+https://github.com/SarahWeiii/diso.git"
|
| 316 |
+
# ], check=True)
|
| 317 |
+
|
| 318 |
+
# # Импорты (перенесены после установки зависимостей)
|
| 319 |
+
# import gradio as gr
|
| 320 |
+
# import uuid
|
| 321 |
+
# import torch
|
| 322 |
+
# import zipfile
|
| 323 |
+
# import requests
|
| 324 |
+
# import traceback
|
| 325 |
+
# import trimesh
|
| 326 |
+
# import numpy as np
|
| 327 |
+
# from trimesh.exchange.gltf import export_glb
|
| 328 |
+
|
| 329 |
+
# from inference_triposg import run_triposg
|
| 330 |
+
# from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 331 |
+
# from briarmbg import BriaRMBG
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
# print("Trimesh version:", trimesh.__version__)
|
| 335 |
+
|
| 336 |
+
# # Настройки устройства
|
| 337 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 338 |
+
# dtype = torch.float16 if device == "cuda" else torch.float32
|
| 339 |
+
|
| 340 |
+
# # Загрузка весов
|
| 341 |
+
# weights_dir = "pretrained_weights"
|
| 342 |
+
# triposg_path = os.path.join(weights_dir, "TripoSG")
|
| 343 |
+
# rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
|
| 344 |
+
|
| 345 |
+
# if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
|
| 346 |
+
# print("📦 Downloading pretrained weights...")
|
| 347 |
+
# url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
|
| 348 |
+
# zip_path = "pretrained_models.zip"
|
| 349 |
+
|
| 350 |
+
# with requests.get(url, stream=True) as r:
|
| 351 |
+
# r.raise_for_status()
|
| 352 |
+
# with open(zip_path, "wb") as f:
|
| 353 |
+
# for chunk in r.iter_content(chunk_size=8192):
|
| 354 |
+
# f.write(chunk)
|
| 355 |
+
|
| 356 |
+
# print("📦 Extracting weights...")
|
| 357 |
+
# with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
| 358 |
+
# zip_ref.extractall(weights_dir)
|
| 359 |
+
|
| 360 |
+
# os.remove(zip_path)
|
| 361 |
+
# print("✅ Weights ready.")
|
| 362 |
+
|
| 363 |
+
# # Загрузка моделей
|
| 364 |
+
# pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
|
| 365 |
+
# rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
| 366 |
+
# rmbg_net.eval()
|
| 367 |
+
|
| 368 |
+
# # Генерация .glb
|
| 369 |
+
# # def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 370 |
+
# # print("[API CALL] image_path received:", image_path)
|
| 371 |
+
# # print("[API CALL] File exists:", os.path.exists(image_path))
|
| 372 |
+
|
| 373 |
+
# # temp_id = str(uuid.uuid4())
|
| 374 |
+
# # output_path = f"/tmp/{temp_id}.glb"
|
| 375 |
+
# # print("[DEBUG] Generating mesh from:", image_path)
|
| 376 |
+
|
| 377 |
+
# # try:
|
| 378 |
+
# # mesh = run_triposg(
|
| 379 |
+
# # pipe=pipe,
|
| 380 |
+
# # image_input=image_path,
|
| 381 |
+
# # rmbg_net=rmbg_net,
|
| 382 |
+
# # seed=42,
|
| 383 |
+
# # num_inference_steps=int(num_steps),
|
| 384 |
+
# # guidance_scale=float(guidance_scale),
|
| 385 |
+
# # faces=int(face_number),
|
| 386 |
+
# # )
|
| 387 |
+
|
| 388 |
+
# # if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
| 389 |
+
# # raise ValueError("Mesh generation returned an empty mesh")
|
| 390 |
+
|
| 391 |
+
# # mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
|
| 392 |
+
# # mesh.rezero()
|
| 393 |
+
# # mesh.fix_normals()
|
| 394 |
+
# # mesh.apply_translation(-mesh.center_mass)
|
| 395 |
+
|
| 396 |
+
# # # Масштабируем, чтобы модель вписывалась в размер 1x1x1
|
| 397 |
+
# # # Если нужно будет подгонять под размер в Endless Tools, то можно использовать:
|
| 398 |
+
# # # scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1))
|
| 399 |
+
# # # mesh.apply_scale(scale_factor)
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
# # glb_data = mesh.export(file_type='glb')
|
| 403 |
+
# # with open(output_path, "wb") as f:
|
| 404 |
+
# # f.write(glb_data)
|
| 405 |
+
|
| 406 |
+
# # print(f"[DEBUG] Mesh saved to {output_path}")
|
| 407 |
+
# # return output_path if os.path.exists(output_path) else None
|
| 408 |
+
|
| 409 |
+
# # except Exception as e:
|
| 410 |
+
# # print("[ERROR]", e)
|
| 411 |
+
# # traceback.print_exc()
|
| 412 |
+
# # return f"Error: {e}"
|
| 413 |
+
|
| 414 |
+
# def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 415 |
+
# print("[API CALL] image_path received:", image_path)
|
| 416 |
+
# print("[API CALL] File exists:", os.path.exists(image_path))
|
| 417 |
+
|
| 418 |
+
# temp_id = str(uuid.uuid4())
|
| 419 |
+
# output_path = f"/tmp/{temp_id}.glb"
|
| 420 |
+
# print("[DEBUG] Generating mesh from:", image_path)
|
| 421 |
+
|
| 422 |
+
# try:
|
| 423 |
+
# mesh = run_triposg(
|
| 424 |
+
# pipe=pipe,
|
| 425 |
+
# image_input=image_path,
|
| 426 |
+
# rmbg_net=rmbg_net,
|
| 427 |
+
# seed=42,
|
| 428 |
+
# num_inference_steps=int(num_steps),
|
| 429 |
+
# guidance_scale=float(guidance_scale),
|
| 430 |
+
# faces=int(face_number),
|
| 431 |
+
# )
|
| 432 |
+
|
| 433 |
+
# if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
| 434 |
+
# raise ValueError("Mesh generation returned an empty mesh")
|
| 435 |
+
|
| 436 |
+
# # 🔧 Пересоздаём Trimesh и гарантируем чистоту геометрии
|
| 437 |
+
# mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=True)
|
| 438 |
+
|
| 439 |
+
# # ✅ Центрируе�� модель
|
| 440 |
+
# mesh.apply_translation(-mesh.center_mass)
|
| 441 |
+
|
| 442 |
+
# # ✅ Масштабируем к единичному размеру (все модели ~одинаковые)
|
| 443 |
+
# scale_factor = 1.0 / np.max(np.linalg.norm(mesh.vertices, axis=1))
|
| 444 |
+
# mesh.apply_scale(scale_factor)
|
| 445 |
+
|
| 446 |
+
# # ✅ Гарантированно пересчитываем нормали
|
| 447 |
+
# mesh.fix_normals()
|
| 448 |
+
|
| 449 |
+
# # print("[DEBUG] Normals present:", mesh.has_vertex_normals)
|
| 450 |
+
# if hasattr(mesh, "vertex_normals"):
|
| 451 |
+
# print("[DEBUG] Normals shape:", mesh.vertex_normals.shape)
|
| 452 |
+
# else:
|
| 453 |
+
# print("[DEBUG] Normals missing.")
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
# # 💾 Сохраняем GLB
|
| 457 |
+
# glb_data = mesh.export(file_type='glb')
|
| 458 |
+
# with open(output_path, "wb") as f:
|
| 459 |
+
# f.write(glb_data)
|
| 460 |
+
|
| 461 |
+
# print(f"[DEBUG] Mesh saved to {output_path}")
|
| 462 |
+
# return output_path if os.path.exists(output_path) else None
|
| 463 |
+
|
| 464 |
+
# except Exception as e:
|
| 465 |
+
# print("[ERROR]", e)
|
| 466 |
+
# traceback.print_exc()
|
| 467 |
+
# return f"Error: {e}"
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
# # Интерфейс Gradio
|
| 471 |
+
# demo = gr.Interface(
|
| 472 |
+
# fn=generate,
|
| 473 |
+
# inputs=gr.Image(type="filepath", label="Upload image"),
|
| 474 |
+
# outputs=gr.File(label="Download .glb"),
|
| 475 |
+
# title="TripoSG Image to 3D",
|
| 476 |
+
# description="Upload an image to generate a 3D model (.glb)",
|
| 477 |
+
# )
|
| 478 |
+
|
| 479 |
+
# # Запуск
|
| 480 |
+
# demo.launch()
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
|
| 491 |
import os
|
| 492 |
import subprocess
|
| 493 |
|
|
|
|
| 510 |
import traceback
|
| 511 |
import trimesh
|
| 512 |
import numpy as np
|
| 513 |
+
|
| 514 |
+
|
| 515 |
from trimesh.exchange.gltf import export_glb
|
| 516 |
|
| 517 |
from inference_triposg import run_triposg
|
| 518 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 519 |
from briarmbg import BriaRMBG
|
| 520 |
|
| 521 |
+
GLTF_PACK = "/tmp/gltfpack"
|
| 522 |
|
| 523 |
print("Trimesh version:", trimesh.__version__)
|
| 524 |
|
|
|
|
| 554 |
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
| 555 |
rmbg_net.eval()
|
| 556 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
|
| 558 |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 559 |
print("[API CALL] image_path received:", image_path)
|
|
|
|
| 596 |
else:
|
| 597 |
print("[DEBUG] Normals missing.")
|
| 598 |
|
|
|
|
| 599 |
# 💾 Сохраняем GLB
|
| 600 |
glb_data = mesh.export(file_type='glb')
|
| 601 |
with open(output_path, "wb") as f:
|
|
|
|
| 619 |
description="Upload an image to generate a 3D model (.glb)",
|
| 620 |
)
|
| 621 |
|
| 622 |
+
|
| 623 |
+
|
| 624 |
# Запуск
|
| 625 |
demo.launch()
|
inference_triposg.py
CHANGED
|
@@ -54,6 +54,7 @@ def run_triposg(
|
|
| 54 |
num_inference_steps: int = 50,
|
| 55 |
guidance_scale: float = 7.0,
|
| 56 |
faces: int = -1,
|
|
|
|
| 57 |
) -> trimesh.Scene:
|
| 58 |
print("[DEBUG] Preparing image...")
|
| 59 |
img_pil = prepare_image(image_input, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
|
@@ -64,6 +65,7 @@ def run_triposg(
|
|
| 64 |
generator=torch.Generator(device=pipe.device).manual_seed(seed),
|
| 65 |
num_inference_steps=num_inference_steps,
|
| 66 |
guidance_scale=guidance_scale,
|
|
|
|
| 67 |
).samples[0]
|
| 68 |
|
| 69 |
print("[DEBUG] TripoSG output keys:", type(outputs), outputs[0].shape, outputs[1].shape)
|
|
|
|
| 54 |
num_inference_steps: int = 50,
|
| 55 |
guidance_scale: float = 7.0,
|
| 56 |
faces: int = -1,
|
| 57 |
+
octree_depth: int = 9, # 👈 добавлено
|
| 58 |
) -> trimesh.Scene:
|
| 59 |
print("[DEBUG] Preparing image...")
|
| 60 |
img_pil = prepare_image(image_input, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
|
|
|
| 65 |
generator=torch.Generator(device=pipe.device).manual_seed(seed),
|
| 66 |
num_inference_steps=num_inference_steps,
|
| 67 |
guidance_scale=guidance_scale,
|
| 68 |
+
flash_octree_depth=octree_depth, # 👈 добавлено
|
| 69 |
).samples[0]
|
| 70 |
|
| 71 |
print("[DEBUG] TripoSG output keys:", type(outputs), outputs[0].shape, outputs[1].shape)
|