Spaces:
Sleeping
Sleeping
staswrs
commited on
Commit
·
f3bc318
1
Parent(s):
e8dac8f
clean scene 7
Browse files- app.py +18 -70
- app_backlog.py +166 -0
app.py
CHANGED
|
@@ -1,19 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
import subprocess
|
| 5 |
-
|
| 6 |
-
# Убираем pyenv, если вдруг остался .python-version
|
| 7 |
-
os.environ.pop("PYENV_VERSION", None)
|
| 8 |
-
|
| 9 |
-
# Установка зависимостей
|
| 10 |
-
subprocess.run(["pip", "install", "torch", "wheel"], check=True)
|
| 11 |
-
subprocess.run([
|
| 12 |
-
"pip", "install", "--no-build-isolation",
|
| 13 |
-
"diso@git+https://github.com/SarahWeiii/diso.git"
|
| 14 |
-
], check=True)
|
| 15 |
-
|
| 16 |
-
# Импорты
|
| 17 |
import gradio as gr
|
| 18 |
import uuid
|
| 19 |
import torch
|
|
@@ -21,13 +7,24 @@ import zipfile
|
|
| 21 |
import requests
|
| 22 |
import traceback
|
| 23 |
import trimesh
|
| 24 |
-
|
| 25 |
-
|
| 26 |
|
| 27 |
from inference_triposg import run_triposg
|
| 28 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 29 |
from briarmbg import BriaRMBG
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Настройки устройства
|
| 32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
|
@@ -61,26 +58,15 @@ rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
|
| 61 |
rmbg_net.eval()
|
| 62 |
|
| 63 |
# Генерация .glb
|
| 64 |
-
# def generate(image_path):
|
| 65 |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 66 |
print("[API CALL] image_path received:", image_path)
|
| 67 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
| 68 |
|
| 69 |
temp_id = str(uuid.uuid4())
|
| 70 |
output_path = f"/tmp/{temp_id}.glb"
|
| 71 |
-
|
| 72 |
print("[DEBUG] Generating mesh from:", image_path)
|
| 73 |
|
| 74 |
try:
|
| 75 |
-
# mesh = run_triposg(
|
| 76 |
-
# pipe=pipe,
|
| 77 |
-
# image_input=image_path,
|
| 78 |
-
# rmbg_net=rmbg_net,
|
| 79 |
-
# seed=42,
|
| 80 |
-
# num_inference_steps=25,
|
| 81 |
-
# guidance_scale=5.0,
|
| 82 |
-
# faces=-1,
|
| 83 |
-
# )
|
| 84 |
mesh = run_triposg(
|
| 85 |
pipe=pipe,
|
| 86 |
image_input=image_path,
|
|
@@ -91,59 +77,25 @@ def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
|
| 91 |
faces=int(face_number),
|
| 92 |
)
|
| 93 |
|
| 94 |
-
# if mesh is None:
|
| 95 |
-
# raise ValueError("Mesh generation failed")
|
| 96 |
-
|
| 97 |
-
# mesh.export(output_path)
|
| 98 |
-
# print(f"[DEBUG] Mesh saved to {output_path}")
|
| 99 |
-
|
| 100 |
-
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
# if mesh is None:
|
| 104 |
-
# raise ValueError("Mesh generation failed")
|
| 105 |
-
|
| 106 |
-
# # Убираем визуал, метаданные, обертки
|
| 107 |
-
# mesh.visual = None
|
| 108 |
-
# mesh.metadata.clear()
|
| 109 |
-
# mesh.name = "endless_tools"
|
| 110 |
-
|
| 111 |
-
# # Экспорт только геометрии
|
| 112 |
-
# glb_data = mesh.export(file_type="glb")
|
| 113 |
-
# with open(output_path, "wb") as f:
|
| 114 |
-
# f.write(glb_data)
|
| 115 |
-
|
| 116 |
-
# print(f"[DEBUG] Mesh saved to {output_path}")
|
| 117 |
-
|
| 118 |
-
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
| 119 |
-
|
| 120 |
if mesh is None:
|
| 121 |
raise ValueError("Mesh generation returned None")
|
| 122 |
|
| 123 |
# Очистка визуала, метаданных и имени
|
| 124 |
-
|
| 125 |
mesh.metadata.clear()
|
| 126 |
mesh.name = "geometry_0"
|
| 127 |
|
| 128 |
-
|
|
|
|
| 129 |
with open(output_path, "wb") as f:
|
| 130 |
f.write(glb_data)
|
| 131 |
|
| 132 |
-
# Экспорт .glb вручную (иначе Trimesh добавляет сцену)
|
| 133 |
-
# glb_data = mesh.export(file_type="glb")
|
| 134 |
-
# with open(output_path, "wb") as f:
|
| 135 |
-
# f.write(glb_data)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
print(f"[DEBUG] Mesh saved to {output_path}")
|
| 139 |
return output_path if os.path.exists(output_path) else None
|
| 140 |
-
|
| 141 |
-
# print("[ERROR]", e)
|
| 142 |
-
# return f"Error: {e}"
|
| 143 |
except Exception as e:
|
| 144 |
-
# import traceback
|
| 145 |
print("[ERROR]", e)
|
| 146 |
-
traceback.print_exc()
|
| 147 |
return f"Error: {e}"
|
| 148 |
|
| 149 |
# Интерфейс Gradio
|
|
@@ -157,7 +109,3 @@ demo = gr.Interface(
|
|
| 157 |
|
| 158 |
# Запуск
|
| 159 |
demo.launch()
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import uuid
|
| 5 |
import torch
|
|
|
|
| 7 |
import requests
|
| 8 |
import traceback
|
| 9 |
import trimesh
|
| 10 |
+
from trimesh.exchange.gltf import export_glb
|
|
|
|
| 11 |
|
| 12 |
from inference_triposg import run_triposg
|
| 13 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 14 |
from briarmbg import BriaRMBG
|
| 15 |
|
| 16 |
+
# Убираем pyenv
|
| 17 |
+
os.environ.pop("PYENV_VERSION", None)
|
| 18 |
+
|
| 19 |
+
# Установка зависимостей
|
| 20 |
+
subprocess.run(["pip", "install", "torch", "wheel"], stdout=subprocess.DEVNULL)
|
| 21 |
+
subprocess.run([
|
| 22 |
+
"pip", "install", "--no-build-isolation",
|
| 23 |
+
"diso@git+https://github.com/SarahWeiii/diso.git"
|
| 24 |
+
], stdout=subprocess.DEVNULL)
|
| 25 |
+
|
| 26 |
+
print("Trimesh version:", trimesh.__version__)
|
| 27 |
+
|
| 28 |
# Настройки устройства
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
|
| 58 |
rmbg_net.eval()
|
| 59 |
|
| 60 |
# Генерация .glb
|
|
|
|
| 61 |
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 62 |
print("[API CALL] image_path received:", image_path)
|
| 63 |
print("[API CALL] File exists:", os.path.exists(image_path))
|
| 64 |
|
| 65 |
temp_id = str(uuid.uuid4())
|
| 66 |
output_path = f"/tmp/{temp_id}.glb"
|
|
|
|
| 67 |
print("[DEBUG] Generating mesh from:", image_path)
|
| 68 |
|
| 69 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
mesh = run_triposg(
|
| 71 |
pipe=pipe,
|
| 72 |
image_input=image_path,
|
|
|
|
| 77 |
faces=int(face_number),
|
| 78 |
)
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
if mesh is None:
|
| 81 |
raise ValueError("Mesh generation returned None")
|
| 82 |
|
| 83 |
# Очистка визуала, метаданных и имени
|
| 84 |
+
mesh.visual = None
|
| 85 |
mesh.metadata.clear()
|
| 86 |
mesh.name = "geometry_0"
|
| 87 |
|
| 88 |
+
# Экспорт в GLB без scene/world
|
| 89 |
+
glb_data = export_glb(mesh)
|
| 90 |
with open(output_path, "wb") as f:
|
| 91 |
f.write(glb_data)
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
print(f"[DEBUG] Mesh saved to {output_path}")
|
| 94 |
return output_path if os.path.exists(output_path) else None
|
| 95 |
+
|
|
|
|
|
|
|
| 96 |
except Exception as e:
|
|
|
|
| 97 |
print("[ERROR]", e)
|
| 98 |
+
traceback.print_exc()
|
| 99 |
return f"Error: {e}"
|
| 100 |
|
| 101 |
# Интерфейс Gradio
|
|
|
|
| 109 |
|
| 110 |
# Запуск
|
| 111 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
app_backlog.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import subprocess
|
| 5 |
+
|
| 6 |
+
# Убираем pyenv, если вдруг остался .python-version
|
| 7 |
+
os.environ.pop("PYENV_VERSION", None)
|
| 8 |
+
|
| 9 |
+
# Установка зависимостей
|
| 10 |
+
subprocess.run(["pip", "install", "torch", "wheel"], check=True)
|
| 11 |
+
subprocess.run([
|
| 12 |
+
"pip", "install", "--no-build-isolation",
|
| 13 |
+
"diso@git+https://github.com/SarahWeiii/diso.git"
|
| 14 |
+
], check=True)
|
| 15 |
+
|
| 16 |
+
# Импорты
|
| 17 |
+
import gradio as gr
|
| 18 |
+
import uuid
|
| 19 |
+
import torch
|
| 20 |
+
import zipfile
|
| 21 |
+
import requests
|
| 22 |
+
import traceback
|
| 23 |
+
import trimesh
|
| 24 |
+
from trimesh.exchange.gltf import export_glb
|
| 25 |
+
|
| 26 |
+
print("Trimesh version:", trimesh.__version__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
from inference_triposg import run_triposg
|
| 30 |
+
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
| 31 |
+
from briarmbg import BriaRMBG
|
| 32 |
+
|
| 33 |
+
# Настройки устройства
|
| 34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 35 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 36 |
+
|
| 37 |
+
# Загрузка весов
|
| 38 |
+
weights_dir = "pretrained_weights"
|
| 39 |
+
triposg_path = os.path.join(weights_dir, "TripoSG")
|
| 40 |
+
rmbg_path = os.path.join(weights_dir, "RMBG-1.4")
|
| 41 |
+
|
| 42 |
+
if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)):
|
| 43 |
+
print("📦 Downloading pretrained weights...")
|
| 44 |
+
url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip"
|
| 45 |
+
zip_path = "pretrained_models.zip"
|
| 46 |
+
|
| 47 |
+
with requests.get(url, stream=True) as r:
|
| 48 |
+
r.raise_for_status()
|
| 49 |
+
with open(zip_path, "wb") as f:
|
| 50 |
+
for chunk in r.iter_content(chunk_size=8192):
|
| 51 |
+
f.write(chunk)
|
| 52 |
+
|
| 53 |
+
print("📦 Extracting weights...")
|
| 54 |
+
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
| 55 |
+
zip_ref.extractall(weights_dir)
|
| 56 |
+
|
| 57 |
+
os.remove(zip_path)
|
| 58 |
+
print("✅ Weights ready.")
|
| 59 |
+
|
| 60 |
+
# Загрузка моделей
|
| 61 |
+
pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype)
|
| 62 |
+
rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device)
|
| 63 |
+
rmbg_net.eval()
|
| 64 |
+
|
| 65 |
+
# Генерация .glb
|
| 66 |
+
# def generate(image_path):
|
| 67 |
+
def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25):
|
| 68 |
+
print("[API CALL] image_path received:", image_path)
|
| 69 |
+
print("[API CALL] File exists:", os.path.exists(image_path))
|
| 70 |
+
|
| 71 |
+
temp_id = str(uuid.uuid4())
|
| 72 |
+
output_path = f"/tmp/{temp_id}.glb"
|
| 73 |
+
|
| 74 |
+
print("[DEBUG] Generating mesh from:", image_path)
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
# mesh = run_triposg(
|
| 78 |
+
# pipe=pipe,
|
| 79 |
+
# image_input=image_path,
|
| 80 |
+
# rmbg_net=rmbg_net,
|
| 81 |
+
# seed=42,
|
| 82 |
+
# num_inference_steps=25,
|
| 83 |
+
# guidance_scale=5.0,
|
| 84 |
+
# faces=-1,
|
| 85 |
+
# )
|
| 86 |
+
mesh = run_triposg(
|
| 87 |
+
pipe=pipe,
|
| 88 |
+
image_input=image_path,
|
| 89 |
+
rmbg_net=rmbg_net,
|
| 90 |
+
seed=42,
|
| 91 |
+
num_inference_steps=int(num_steps),
|
| 92 |
+
guidance_scale=float(guidance_scale),
|
| 93 |
+
faces=int(face_number),
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# if mesh is None:
|
| 97 |
+
# raise ValueError("Mesh generation failed")
|
| 98 |
+
|
| 99 |
+
# mesh.export(output_path)
|
| 100 |
+
# print(f"[DEBUG] Mesh saved to {output_path}")
|
| 101 |
+
|
| 102 |
+
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# if mesh is None:
|
| 106 |
+
# raise ValueError("Mesh generation failed")
|
| 107 |
+
|
| 108 |
+
# # Убираем визуал, метаданные, обертки
|
| 109 |
+
# mesh.visual = None
|
| 110 |
+
# mesh.metadata.clear()
|
| 111 |
+
# mesh.name = "endless_tools"
|
| 112 |
+
|
| 113 |
+
# # Экспорт только геометрии
|
| 114 |
+
# glb_data = mesh.export(file_type="glb")
|
| 115 |
+
# with open(output_path, "wb") as f:
|
| 116 |
+
# f.write(glb_data)
|
| 117 |
+
|
| 118 |
+
# print(f"[DEBUG] Mesh saved to {output_path}")
|
| 119 |
+
|
| 120 |
+
# return output_path if os.path.exists(output_path) else "Error: output file not found"
|
| 121 |
+
|
| 122 |
+
if mesh is None:
|
| 123 |
+
raise ValueError("Mesh generation returned None")
|
| 124 |
+
|
| 125 |
+
# Очистка визуала, метаданных и имени
|
| 126 |
+
mesh.visual = None
|
| 127 |
+
mesh.metadata.clear()
|
| 128 |
+
mesh.name = "geometry_0"
|
| 129 |
+
|
| 130 |
+
# glb_data = mesh.export(file_type="glb")
|
| 131 |
+
glb_data = export_glb(mesh)
|
| 132 |
+
with open(output_path, "wb") as f:
|
| 133 |
+
f.write(glb_data)
|
| 134 |
+
|
| 135 |
+
# Экспорт .glb вручную (иначе Trimesh добавляет сцену)
|
| 136 |
+
# glb_data = mesh.export(file_type="glb")
|
| 137 |
+
# with open(output_path, "wb") as f:
|
| 138 |
+
# f.write(glb_data)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
print(f"[DEBUG] Mesh saved to {output_path}")
|
| 142 |
+
return output_path if os.path.exists(output_path) else None
|
| 143 |
+
# except Exception as e:
|
| 144 |
+
# print("[ERROR]", e)
|
| 145 |
+
# return f"Error: {e}"
|
| 146 |
+
except Exception as e:
|
| 147 |
+
# import traceback
|
| 148 |
+
print("[ERROR]", e)
|
| 149 |
+
traceback.print_exc() # ← выведет полную трассировку в логи
|
| 150 |
+
return f"Error: {e}"
|
| 151 |
+
|
| 152 |
+
# Интерфейс Gradio
|
| 153 |
+
demo = gr.Interface(
|
| 154 |
+
fn=generate,
|
| 155 |
+
inputs=gr.Image(type="filepath", label="Upload image"),
|
| 156 |
+
outputs=gr.File(label="Download .glb"),
|
| 157 |
+
title="TripoSG Image to 3D",
|
| 158 |
+
description="Upload an image to generate a 3D model (.glb)",
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Запуск
|
| 162 |
+
demo.launch()
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|