Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,91 +1,70 @@
|
|
| 1 |
-
import
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
-
import seaborn as sns
|
| 6 |
from transformers import pipeline
|
| 7 |
-
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
-
# Check
|
| 20 |
-
if uploaded_file is not None:
|
| 21 |
-
# Read CSV
|
| 22 |
-
df = pd.read_csv(uploaded_file)
|
| 23 |
-
|
| 24 |
-
# Display first few rows of the uploaded data
|
| 25 |
-
st.write("### Uploaded Data", df.head())
|
| 26 |
-
|
| 27 |
-
# Ensure correct column names
|
| 28 |
if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns:
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 79 |
-
budget_df.plot(kind='bar', ax=ax)
|
| 80 |
-
ax.set_ylabel('Amount ($)')
|
| 81 |
-
ax.set_title('Budget vs Actual Spending')
|
| 82 |
-
st.pyplot(fig)
|
| 83 |
-
|
| 84 |
-
# Suggestions for saving
|
| 85 |
-
st.write("### Suggested Savings Tips")
|
| 86 |
-
for category, actual in category_spending.items():
|
| 87 |
-
if actual > budget_dict.get(category, 500):
|
| 88 |
-
st.write(f"- **{category}**: Over budget by ${actual - budget_dict.get(category, 500)}. Consider reducing this expense.")
|
| 89 |
-
|
| 90 |
-
else:
|
| 91 |
-
st.write("Upload a CSV file to start tracking your expenses!")
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import matplotlib.pyplot as plt
|
|
|
|
| 5 |
from transformers import pipeline
|
| 6 |
+
import plotly.express as px
|
| 7 |
|
| 8 |
+
# Initialize the Hugging Face model for expense categorization
|
| 9 |
+
expense_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 10 |
|
| 11 |
+
# Function to categorize expenses
|
| 12 |
+
def categorize_transaction_batch(descriptions):
|
| 13 |
+
candidate_labels = ["Groceries", "Entertainment", "Rent", "Utilities", "Dining", "Transportation", "Shopping", "Others"]
|
| 14 |
+
return [expense_classifier(description, candidate_labels)["labels"][0] for description in descriptions]
|
| 15 |
|
| 16 |
+
# Function to process the uploaded CSV and generate visualizations
|
| 17 |
+
def process_expenses(file):
|
| 18 |
+
df = pd.read_csv(file.name)
|
| 19 |
|
| 20 |
+
# Check required columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns:
|
| 22 |
+
return "CSV file should contain 'Date', 'Description', and 'Amount' columns."
|
| 23 |
+
|
| 24 |
+
# Categorize the expenses
|
| 25 |
+
df['Category'] = categorize_transaction_batch(df['Description'].tolist())
|
| 26 |
+
|
| 27 |
+
# Pie chart for Category-wise spending
|
| 28 |
+
category_spending = df.groupby("Category")['Amount'].sum()
|
| 29 |
+
fig1 = px.pie(category_spending, names=category_spending.index, values=category_spending.values, title="Category-wise Spending")
|
| 30 |
+
|
| 31 |
+
# Monthly spending trends (Line plot)
|
| 32 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
| 33 |
+
df['Month'] = df['Date'].dt.to_period('M')
|
| 34 |
+
monthly_spending = df.groupby('Month')['Amount'].sum()
|
| 35 |
+
fig2 = px.line(monthly_spending, x=monthly_spending.index, y=monthly_spending.values, title="Monthly Spending Trends")
|
| 36 |
+
|
| 37 |
+
# Budget vs Actual Spending (Bar chart)
|
| 38 |
+
category_list = df['Category'].unique()
|
| 39 |
+
budget_dict = {category: 500 for category in category_list} # Set default budget of 500 for each category
|
| 40 |
+
budget_spending = {category: [budget_dict[category], category_spending.get(category, 0)] for category in category_list}
|
| 41 |
+
budget_df = pd.DataFrame(budget_spending, index=["Budget", "Actual"]).T
|
| 42 |
+
fig3 = px.bar(budget_df, x=budget_df.index, y=["Budget", "Actual"], title="Budget vs Actual Spending")
|
| 43 |
+
|
| 44 |
+
# Suggested savings
|
| 45 |
+
savings_tips = []
|
| 46 |
+
for category, actual in category_spending.items():
|
| 47 |
+
if actual > budget_dict.get(category, 500):
|
| 48 |
+
savings_tips.append(f"- **{category}**: Over budget by ${actual - budget_dict.get(category, 500)}. Consider reducing this expense.")
|
| 49 |
+
|
| 50 |
+
return df.head(), fig1, fig2, fig3, savings_tips
|
| 51 |
+
|
| 52 |
+
# Gradio interface definition
|
| 53 |
+
inputs = gr.inputs.File(label="Upload Expense CSV", type="file")
|
| 54 |
+
outputs = [
|
| 55 |
+
gr.outputs.Dataframe(label="Categorized Expense Data"),
|
| 56 |
+
gr.outputs.Plotly(label="Category-wise Spending (Pie Chart)"),
|
| 57 |
+
gr.outputs.Plotly(label="Monthly Spending Trends (Line Chart)"),
|
| 58 |
+
gr.outputs.Plotly(label="Budget vs Actual Spending (Bar Chart)"),
|
| 59 |
+
gr.outputs.Textbox(label="Savings Tips")
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
# Launch Gradio interface
|
| 63 |
+
gr.Interface(
|
| 64 |
+
fn=process_expenses,
|
| 65 |
+
inputs=inputs,
|
| 66 |
+
outputs=outputs,
|
| 67 |
+
live=True,
|
| 68 |
+
title="Smart Expense Tracker",
|
| 69 |
+
description="Upload your CSV of transactions, categorize them, and view insights like spending trends and budget analysis."
|
| 70 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|