Update app.py
Browse files
app.py
CHANGED
|
@@ -21,6 +21,8 @@ import nltk
|
|
| 21 |
from nltk.corpus import stopwords
|
| 22 |
import langdetect
|
| 23 |
import pandas as pd
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Configuration
|
| 26 |
@dataclass
|
|
@@ -43,7 +45,8 @@ class Config:
|
|
| 43 |
|
| 44 |
MODELS = {
|
| 45 |
'en': "cardiffnlp/twitter-roberta-base-sentiment-latest",
|
| 46 |
-
'multilingual': "cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
|
|
|
| 47 |
}
|
| 48 |
|
| 49 |
# Color themes
|
|
@@ -77,22 +80,33 @@ class ModelManager:
|
|
| 77 |
self._load_default_model()
|
| 78 |
|
| 79 |
def _load_default_model(self):
|
| 80 |
-
"""Load the default
|
| 81 |
try:
|
| 82 |
-
|
|
|
|
| 83 |
self.tokenizers['default'] = AutoTokenizer.from_pretrained(model_name)
|
| 84 |
self.models['default'] = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 85 |
self.models['default'].to(self.device)
|
| 86 |
logger.info(f"Default model loaded: {model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
except Exception as e:
|
| 88 |
-
logger.error(f"Failed to load
|
| 89 |
raise
|
| 90 |
|
| 91 |
def get_model(self, language='en'):
|
| 92 |
"""Get model for specific language"""
|
| 93 |
-
if language
|
|
|
|
|
|
|
| 94 |
return self.models['default'], self.tokenizers['default']
|
| 95 |
-
return self.models['default'], self.tokenizers['default'] # Use multilingual for
|
| 96 |
|
| 97 |
@staticmethod
|
| 98 |
def detect_language(text: str) -> str:
|
|
@@ -318,7 +332,166 @@ class SentimentAnalyzer:
|
|
| 318 |
})
|
| 319 |
return results
|
| 320 |
|
| 321 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
"""Enhanced visualizations with Plotly"""
|
| 323 |
|
| 324 |
@staticmethod
|
|
@@ -675,12 +848,12 @@ def analyze_batch_texts(batch_text: str, language: str, theme: str,
|
|
| 675 |
logger.error(f"Batch analysis failed: {e}")
|
| 676 |
return f"Error: {str(e)}", None, None, None
|
| 677 |
|
| 678 |
-
def analyze_advanced_text(text: str, language: str, theme: str,
|
| 679 |
-
|
| 680 |
-
"""Advanced analysis with
|
| 681 |
try:
|
| 682 |
if not text.strip():
|
| 683 |
-
return "Please enter text", None, None
|
| 684 |
|
| 685 |
# Map display names back to language codes
|
| 686 |
language_map = {
|
|
@@ -694,14 +867,31 @@ def analyze_advanced_text(text: str, language: str, theme: str, include_keywords
|
|
| 694 |
}
|
| 695 |
language_code = language_map.get(language, 'auto')
|
| 696 |
|
|
|
|
| 697 |
result = SentimentAnalyzer.analyze_text(text, language_code)
|
| 698 |
|
| 699 |
-
#
|
| 700 |
-
|
| 701 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 702 |
|
| 703 |
-
#
|
| 704 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 705 |
|
| 706 |
# Add to history
|
| 707 |
history_entry = {
|
|
@@ -715,39 +905,45 @@ def analyze_advanced_text(text: str, language: str, theme: str, include_keywords
|
|
| 715 |
'language': result['language'],
|
| 716 |
'timestamp': datetime.now().isoformat(),
|
| 717 |
'analysis_type': 'advanced',
|
| 718 |
-
'
|
| 719 |
}
|
| 720 |
history_manager.add_entry(history_entry)
|
| 721 |
|
| 722 |
-
# Create visualizations
|
| 723 |
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme)
|
| 724 |
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme)
|
| 725 |
|
| 726 |
# Create detailed info text
|
| 727 |
-
confidence_status = "✅ High Confidence" if meets_confidence else "⚠️ Low Confidence"
|
| 728 |
-
|
| 729 |
info_text = f"""
|
| 730 |
**Advanced Analysis Results:**
|
| 731 |
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
| 732 |
-
- **Confidence Status:** {confidence_status}
|
| 733 |
- **Language:** {result['language'].upper()}
|
| 734 |
- **Text Statistics:**
|
| 735 |
- Words: {result['word_count']}
|
| 736 |
- Characters: {result['char_count']}
|
| 737 |
- Average word length: {result['char_count']/max(result['word_count'], 1):.1f}
|
|
|
|
|
|
|
|
|
|
| 738 |
"""
|
| 739 |
|
| 740 |
-
if
|
| 741 |
-
|
|
|
|
|
|
|
|
|
|
| 742 |
|
| 743 |
-
if
|
| 744 |
-
|
|
|
|
|
|
|
|
|
|
| 745 |
|
| 746 |
-
return info_text, gauge_fig, bars_fig
|
| 747 |
|
| 748 |
except Exception as e:
|
| 749 |
logger.error(f"Advanced analysis failed: {e}")
|
| 750 |
-
return f"Error: {str(e)}", None, None
|
| 751 |
|
| 752 |
def get_history_stats():
|
| 753 |
"""Get enhanced history statistics"""
|
|
@@ -868,36 +1064,35 @@ def get_recent_analyses():
|
|
| 868 |
|
| 869 |
return summary_text
|
| 870 |
|
|
|
|
| 871 |
SAMPLE_TEXTS = [
|
| 872 |
# Auto Detect
|
| 873 |
-
["The film had its moments, but overall it felt a bit too long and lacked emotional depth.
|
| 874 |
|
| 875 |
# English
|
| 876 |
-
["I was completely blown away by the movie — the performances were raw and powerful, and the story stayed with me long after the credits rolled.
|
| 877 |
|
| 878 |
# Chinese
|
| 879 |
-
["
|
| 880 |
|
| 881 |
# Spanish
|
| 882 |
-
["Una obra maestra del cine contemporáneo, con actuaciones sobresalientes, un guion bien escrito y una dirección impecable.
|
| 883 |
|
| 884 |
# French
|
| 885 |
-
["Je m'attendais à beaucoup mieux. Le scénario était confus, les dialogues ennuyeux, et je me suis presque endormi au milieu du film.
|
| 886 |
|
| 887 |
# German
|
| 888 |
-
["Der Film war ein emotionales Erlebnis mit großartigen Bildern, einem mitreißenden Soundtrack und einer Geschichte, die zum Nachdenken anregt.
|
| 889 |
|
| 890 |
# Swedish
|
| 891 |
-
["Filmen var en besvikelse – tråkig handling, överdrivet skådespeleri och ett slut som inte gav något avslut alls.
|
| 892 |
]
|
| 893 |
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
Could be better, but it's okay. It does the job, but there are some issues with the build quality. Not bad, just not great either."""
|
| 900 |
-
|
| 901 |
|
| 902 |
# Gradio Interface
|
| 903 |
with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Multilingual Sentiment Analyzer") as demo:
|
|
@@ -945,6 +1140,53 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Multilingual Sentiment An
|
|
| 945 |
gauge_plot = gr.Plot(label="Sentiment Gauge")
|
| 946 |
bars_plot = gr.Plot(label="Probability Distribution")
|
| 947 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 948 |
with gr.Tab("📊 Batch Analysis"):
|
| 949 |
with gr.Row():
|
| 950 |
with gr.Column(scale=2):
|
|
@@ -992,54 +1234,6 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Multilingual Sentiment An
|
|
| 992 |
batch_summary_plot = gr.Plot(label="Sentiment Summary")
|
| 993 |
batch_confidence_plot = gr.Plot(label="Confidence Distribution")
|
| 994 |
|
| 995 |
-
with gr.Tab("🔬 Advanced Analysis"):
|
| 996 |
-
with gr.Row():
|
| 997 |
-
with gr.Column(scale=2):
|
| 998 |
-
advanced_input = gr.Textbox(
|
| 999 |
-
label="Text for Advanced Analysis",
|
| 1000 |
-
placeholder="Enter text for detailed analysis...",
|
| 1001 |
-
lines=4
|
| 1002 |
-
)
|
| 1003 |
-
|
| 1004 |
-
with gr.Row():
|
| 1005 |
-
advanced_language = gr.Dropdown(
|
| 1006 |
-
choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
|
| 1007 |
-
value='Auto Detect',
|
| 1008 |
-
label="Language"
|
| 1009 |
-
)
|
| 1010 |
-
advanced_theme = gr.Dropdown(
|
| 1011 |
-
choices=list(config.THEMES.keys()),
|
| 1012 |
-
value='default',
|
| 1013 |
-
label="Theme"
|
| 1014 |
-
)
|
| 1015 |
-
|
| 1016 |
-
with gr.Row():
|
| 1017 |
-
include_keywords = gr.Checkbox(label="Extract Keywords", value=True)
|
| 1018 |
-
keyword_count = gr.Slider(
|
| 1019 |
-
minimum=3,
|
| 1020 |
-
maximum=10,
|
| 1021 |
-
value=5,
|
| 1022 |
-
step=1,
|
| 1023 |
-
label="Number of Keywords"
|
| 1024 |
-
)
|
| 1025 |
-
|
| 1026 |
-
min_confidence_slider = gr.Slider(
|
| 1027 |
-
minimum=0.0,
|
| 1028 |
-
maximum=1.0,
|
| 1029 |
-
value=0.7,
|
| 1030 |
-
step=0.1,
|
| 1031 |
-
label="Minimum Confidence Threshold"
|
| 1032 |
-
)
|
| 1033 |
-
|
| 1034 |
-
advanced_analyze_btn = gr.Button("🔬 Advanced Analyze", variant="primary", size="lg")
|
| 1035 |
-
|
| 1036 |
-
with gr.Column(scale=1):
|
| 1037 |
-
advanced_result_info = gr.Markdown("Configure settings and click Advanced Analyze")
|
| 1038 |
-
|
| 1039 |
-
with gr.Row():
|
| 1040 |
-
advanced_gauge_plot = gr.Plot(label="Sentiment Gauge")
|
| 1041 |
-
advanced_bars_plot = gr.Plot(label="Probability Distribution")
|
| 1042 |
-
|
| 1043 |
with gr.Tab("📈 History & Analytics"):
|
| 1044 |
with gr.Row():
|
| 1045 |
with gr.Column():
|
|
@@ -1109,8 +1303,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Multilingual Sentiment An
|
|
| 1109 |
# Advanced Analysis
|
| 1110 |
advanced_analyze_btn.click(
|
| 1111 |
analyze_advanced_text,
|
| 1112 |
-
inputs=[advanced_input, advanced_language, advanced_theme,
|
| 1113 |
-
outputs=[advanced_result_info, advanced_gauge_plot, advanced_bars_plot]
|
| 1114 |
)
|
| 1115 |
|
| 1116 |
# History & Analytics
|
|
|
|
| 21 |
from nltk.corpus import stopwords
|
| 22 |
import langdetect
|
| 23 |
import pandas as pd
|
| 24 |
+
import shap
|
| 25 |
+
from lime.lime_text import LimeTextExplainer
|
| 26 |
|
| 27 |
# Configuration
|
| 28 |
@dataclass
|
|
|
|
| 45 |
|
| 46 |
MODELS = {
|
| 47 |
'en': "cardiffnlp/twitter-roberta-base-sentiment-latest",
|
| 48 |
+
'multilingual': "cardiffnlp/twitter-xlm-roberta-base-sentiment",
|
| 49 |
+
'zh': "uer/roberta-base-finetuned-dianping-chinese"
|
| 50 |
}
|
| 51 |
|
| 52 |
# Color themes
|
|
|
|
| 80 |
self._load_default_model()
|
| 81 |
|
| 82 |
def _load_default_model(self):
|
| 83 |
+
"""Load the default models"""
|
| 84 |
try:
|
| 85 |
+
# Load multilingual model as default
|
| 86 |
+
model_name = config.MODELS['multilingual']
|
| 87 |
self.tokenizers['default'] = AutoTokenizer.from_pretrained(model_name)
|
| 88 |
self.models['default'] = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 89 |
self.models['default'].to(self.device)
|
| 90 |
logger.info(f"Default model loaded: {model_name}")
|
| 91 |
+
|
| 92 |
+
# Load Chinese model
|
| 93 |
+
zh_model_name = config.MODELS['zh']
|
| 94 |
+
self.tokenizers['zh'] = AutoTokenizer.from_pretrained(zh_model_name)
|
| 95 |
+
self.models['zh'] = AutoModelForSequenceClassification.from_pretrained(zh_model_name)
|
| 96 |
+
self.models['zh'].to(self.device)
|
| 97 |
+
logger.info(f"Chinese model loaded: {zh_model_name}")
|
| 98 |
+
|
| 99 |
except Exception as e:
|
| 100 |
+
logger.error(f"Failed to load models: {e}")
|
| 101 |
raise
|
| 102 |
|
| 103 |
def get_model(self, language='en'):
|
| 104 |
"""Get model for specific language"""
|
| 105 |
+
if language == 'zh':
|
| 106 |
+
return self.models['zh'], self.tokenizers['zh']
|
| 107 |
+
elif language in ['en', 'auto'] or language not in config.SUPPORTED_LANGUAGES:
|
| 108 |
return self.models['default'], self.tokenizers['default']
|
| 109 |
+
return self.models['default'], self.tokenizers['default'] # Use multilingual for other languages
|
| 110 |
|
| 111 |
@staticmethod
|
| 112 |
def detect_language(text: str) -> str:
|
|
|
|
| 332 |
})
|
| 333 |
return results
|
| 334 |
|
| 335 |
+
class ExplainabilityAnalyzer:
|
| 336 |
+
"""SHAP and LIME explainability analysis"""
|
| 337 |
+
|
| 338 |
+
@staticmethod
|
| 339 |
+
def create_prediction_function(model, tokenizer, device):
|
| 340 |
+
"""Create prediction function for LIME"""
|
| 341 |
+
def predict_proba(texts):
|
| 342 |
+
if isinstance(texts, str):
|
| 343 |
+
texts = [texts]
|
| 344 |
+
|
| 345 |
+
results = []
|
| 346 |
+
for text in texts:
|
| 347 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True,
|
| 348 |
+
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(device)
|
| 349 |
+
with torch.no_grad():
|
| 350 |
+
outputs = model(**inputs)
|
| 351 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
| 352 |
+
results.append(probs)
|
| 353 |
+
|
| 354 |
+
return np.array(results)
|
| 355 |
+
return predict_proba
|
| 356 |
+
|
| 357 |
+
@staticmethod
|
| 358 |
+
def analyze_with_lime(text: str, model, tokenizer, device, num_features: int = 10) -> Dict:
|
| 359 |
+
"""Analyze text with LIME"""
|
| 360 |
+
try:
|
| 361 |
+
# Create prediction function
|
| 362 |
+
predict_fn = ExplainabilityAnalyzer.create_prediction_function(model, tokenizer, device)
|
| 363 |
+
|
| 364 |
+
# Initialize LIME explainer
|
| 365 |
+
explainer = LimeTextExplainer(class_names=['Negative', 'Neutral', 'Positive'] if len(predict_fn([text])[0]) == 3 else ['Negative', 'Positive'])
|
| 366 |
+
|
| 367 |
+
# Generate explanation
|
| 368 |
+
explanation = explainer.explain_instance(
|
| 369 |
+
text,
|
| 370 |
+
predict_fn,
|
| 371 |
+
num_features=num_features,
|
| 372 |
+
num_samples=100
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Extract feature importance
|
| 376 |
+
feature_importance = explanation.as_list()
|
| 377 |
+
|
| 378 |
+
return {
|
| 379 |
+
'method': 'LIME',
|
| 380 |
+
'feature_importance': feature_importance,
|
| 381 |
+
'explanation': explanation
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
except Exception as e:
|
| 385 |
+
logger.error(f"LIME analysis failed: {e}")
|
| 386 |
+
return {'method': 'LIME', 'error': str(e)}
|
| 387 |
+
|
| 388 |
+
@staticmethod
|
| 389 |
+
def analyze_with_attention(text: str, model, tokenizer, device) -> Dict:
|
| 390 |
+
"""Analyze text with attention weights"""
|
| 391 |
+
try:
|
| 392 |
+
# Tokenize input
|
| 393 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True,
|
| 394 |
+
truncation=True, max_length=config.MAX_TEXT_LENGTH,
|
| 395 |
+
return_attention_mask=True).to(device)
|
| 396 |
+
|
| 397 |
+
# Get model outputs with attention
|
| 398 |
+
with torch.no_grad():
|
| 399 |
+
outputs = model(**inputs, output_attentions=True)
|
| 400 |
+
attentions = outputs.attentions
|
| 401 |
+
|
| 402 |
+
# Get tokens
|
| 403 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
|
| 404 |
+
|
| 405 |
+
# Average attention across layers and heads
|
| 406 |
+
avg_attention = torch.mean(torch.stack(attentions), dim=(0, 1, 2)).cpu().numpy()
|
| 407 |
+
|
| 408 |
+
# Create attention weights for each token
|
| 409 |
+
attention_weights = []
|
| 410 |
+
for i, token in enumerate(tokens):
|
| 411 |
+
if i < len(avg_attention):
|
| 412 |
+
attention_weights.append((token, float(avg_attention[i])))
|
| 413 |
+
|
| 414 |
+
return {
|
| 415 |
+
'method': 'Attention',
|
| 416 |
+
'tokens': tokens,
|
| 417 |
+
'attention_weights': attention_weights
|
| 418 |
+
}
|
| 419 |
+
|
| 420 |
+
except Exception as e:
|
| 421 |
+
logger.error(f"Attention analysis failed: {e}")
|
| 422 |
+
return {'method': 'Attention', 'error': str(e)}
|
| 423 |
+
|
| 424 |
+
class AdvancedVisualizer:
|
| 425 |
+
"""Visualizations for explainability analysis"""
|
| 426 |
+
|
| 427 |
+
@staticmethod
|
| 428 |
+
def create_lime_plot(lime_result: Dict, theme: str = 'default') -> go.Figure:
|
| 429 |
+
"""Create LIME feature importance plot"""
|
| 430 |
+
if 'error' in lime_result:
|
| 431 |
+
fig = go.Figure()
|
| 432 |
+
fig.add_annotation(text=f"LIME Error: {lime_result['error']}",
|
| 433 |
+
x=0.5, y=0.5, showarrow=False)
|
| 434 |
+
return fig
|
| 435 |
+
|
| 436 |
+
features, scores = zip(*lime_result['feature_importance'])
|
| 437 |
+
colors = ['red' if score < 0 else 'green' for score in scores]
|
| 438 |
+
|
| 439 |
+
fig = go.Figure(data=[
|
| 440 |
+
go.Bar(
|
| 441 |
+
y=features,
|
| 442 |
+
x=scores,
|
| 443 |
+
orientation='h',
|
| 444 |
+
marker_color=colors,
|
| 445 |
+
text=[f'{score:.3f}' for score in scores],
|
| 446 |
+
textposition='auto'
|
| 447 |
+
)
|
| 448 |
+
])
|
| 449 |
+
|
| 450 |
+
fig.update_layout(
|
| 451 |
+
title="LIME Feature Importance",
|
| 452 |
+
xaxis_title="Importance Score",
|
| 453 |
+
yaxis_title="Features",
|
| 454 |
+
height=400,
|
| 455 |
+
showlegend=False
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
return fig
|
| 459 |
+
|
| 460 |
+
@staticmethod
|
| 461 |
+
def create_attention_plot(attention_result: Dict, theme: str = 'default') -> go.Figure:
|
| 462 |
+
"""Create attention weights visualization"""
|
| 463 |
+
if 'error' in attention_result:
|
| 464 |
+
fig = go.Figure()
|
| 465 |
+
fig.add_annotation(text=f"Attention Error: {attention_result['error']}",
|
| 466 |
+
x=0.5, y=0.5, showarrow=False)
|
| 467 |
+
return fig
|
| 468 |
+
|
| 469 |
+
tokens, weights = zip(*attention_result['attention_weights'])
|
| 470 |
+
|
| 471 |
+
# Normalize weights for better visualization
|
| 472 |
+
weights = np.array(weights)
|
| 473 |
+
normalized_weights = (weights - weights.min()) / (weights.max() - weights.min()) if weights.max() > weights.min() else weights
|
| 474 |
+
|
| 475 |
+
fig = go.Figure(data=[
|
| 476 |
+
go.Bar(
|
| 477 |
+
x=list(range(len(tokens))),
|
| 478 |
+
y=normalized_weights,
|
| 479 |
+
text=tokens,
|
| 480 |
+
textposition='outside',
|
| 481 |
+
marker_color=normalized_weights,
|
| 482 |
+
colorscale='Viridis'
|
| 483 |
+
)
|
| 484 |
+
])
|
| 485 |
+
|
| 486 |
+
fig.update_layout(
|
| 487 |
+
title="Attention Weights",
|
| 488 |
+
xaxis_title="Token Position",
|
| 489 |
+
yaxis_title="Attention Weight (Normalized)",
|
| 490 |
+
height=400,
|
| 491 |
+
showlegend=False
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
return fig
|
| 495 |
"""Enhanced visualizations with Plotly"""
|
| 496 |
|
| 497 |
@staticmethod
|
|
|
|
| 848 |
logger.error(f"Batch analysis failed: {e}")
|
| 849 |
return f"Error: {str(e)}", None, None, None
|
| 850 |
|
| 851 |
+
def analyze_advanced_text(text: str, language: str, theme: str, use_lime: bool,
|
| 852 |
+
use_attention: bool, lime_features: int):
|
| 853 |
+
"""Advanced analysis with SHAP and LIME explainability"""
|
| 854 |
try:
|
| 855 |
if not text.strip():
|
| 856 |
+
return "Please enter text", None, None, None, None
|
| 857 |
|
| 858 |
# Map display names back to language codes
|
| 859 |
language_map = {
|
|
|
|
| 867 |
}
|
| 868 |
language_code = language_map.get(language, 'auto')
|
| 869 |
|
| 870 |
+
# Basic sentiment analysis
|
| 871 |
result = SentimentAnalyzer.analyze_text(text, language_code)
|
| 872 |
|
| 873 |
+
# Get model for explainability analysis
|
| 874 |
+
model, tokenizer = model_manager.get_model(language_code)
|
| 875 |
+
|
| 876 |
+
# Initialize explainability results
|
| 877 |
+
lime_result = None
|
| 878 |
+
attention_result = None
|
| 879 |
+
lime_plot = None
|
| 880 |
+
attention_plot = None
|
| 881 |
+
|
| 882 |
+
# LIME Analysis
|
| 883 |
+
if use_lime:
|
| 884 |
+
lime_result = ExplainabilityAnalyzer.analyze_with_lime(
|
| 885 |
+
text, model, tokenizer, model_manager.device, lime_features
|
| 886 |
+
)
|
| 887 |
+
lime_plot = AdvancedVisualizer.create_lime_plot(lime_result, theme)
|
| 888 |
|
| 889 |
+
# Attention Analysis
|
| 890 |
+
if use_attention:
|
| 891 |
+
attention_result = ExplainabilityAnalyzer.analyze_with_attention(
|
| 892 |
+
text, model, tokenizer, model_manager.device
|
| 893 |
+
)
|
| 894 |
+
attention_plot = AdvancedVisualizer.create_attention_plot(attention_result, theme)
|
| 895 |
|
| 896 |
# Add to history
|
| 897 |
history_entry = {
|
|
|
|
| 905 |
'language': result['language'],
|
| 906 |
'timestamp': datetime.now().isoformat(),
|
| 907 |
'analysis_type': 'advanced',
|
| 908 |
+
'explainability_used': use_lime or use_attention
|
| 909 |
}
|
| 910 |
history_manager.add_entry(history_entry)
|
| 911 |
|
| 912 |
+
# Create basic visualizations
|
| 913 |
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme)
|
| 914 |
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme)
|
| 915 |
|
| 916 |
# Create detailed info text
|
|
|
|
|
|
|
| 917 |
info_text = f"""
|
| 918 |
**Advanced Analysis Results:**
|
| 919 |
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
|
|
|
| 920 |
- **Language:** {result['language'].upper()}
|
| 921 |
- **Text Statistics:**
|
| 922 |
- Words: {result['word_count']}
|
| 923 |
- Characters: {result['char_count']}
|
| 924 |
- Average word length: {result['char_count']/max(result['word_count'], 1):.1f}
|
| 925 |
+
- **Keywords:** {', '.join(result['keywords'])}
|
| 926 |
+
|
| 927 |
+
**Explainability Analysis:**
|
| 928 |
"""
|
| 929 |
|
| 930 |
+
if use_lime:
|
| 931 |
+
if 'error' not in lime_result:
|
| 932 |
+
info_text += f"\n- **LIME:** ✅ Analyzed top {lime_features} features"
|
| 933 |
+
else:
|
| 934 |
+
info_text += f"\n- **LIME:** ❌ Error occurred"
|
| 935 |
|
| 936 |
+
if use_attention:
|
| 937 |
+
if 'error' not in attention_result:
|
| 938 |
+
info_text += f"\n- **Attention:** ✅ Token-level attention weights computed"
|
| 939 |
+
else:
|
| 940 |
+
info_text += f"\n- **Attention:** ❌ Error occurred"
|
| 941 |
|
| 942 |
+
return info_text, gauge_fig, bars_fig, lime_plot, attention_plot
|
| 943 |
|
| 944 |
except Exception as e:
|
| 945 |
logger.error(f"Advanced analysis failed: {e}")
|
| 946 |
+
return f"Error: {str(e)}", None, None, None, None
|
| 947 |
|
| 948 |
def get_history_stats():
|
| 949 |
"""Get enhanced history statistics"""
|
|
|
|
| 1064 |
|
| 1065 |
return summary_text
|
| 1066 |
|
| 1067 |
+
# Sample data
|
| 1068 |
SAMPLE_TEXTS = [
|
| 1069 |
# Auto Detect
|
| 1070 |
+
["The film had its moments, but overall it felt a bit too long and lacked emotional depth."],
|
| 1071 |
|
| 1072 |
# English
|
| 1073 |
+
["I was completely blown away by the movie — the performances were raw and powerful, and the story stayed with me long after the credits rolled."],
|
| 1074 |
|
| 1075 |
# Chinese
|
| 1076 |
+
["这部电影节奏拖沓,剧情老套,完全没有让我产生任何共鸣,是一次失望的观影体验。"],
|
| 1077 |
|
| 1078 |
# Spanish
|
| 1079 |
+
["Una obra maestra del cine contemporáneo, con actuaciones sobresalientes, un guion bien escrito y una dirección impecable."],
|
| 1080 |
|
| 1081 |
# French
|
| 1082 |
+
["Je m'attendais à beaucoup mieux. Le scénario était confus, les dialogues ennuyeux, et je me suis presque endormi au milieu du film."],
|
| 1083 |
|
| 1084 |
# German
|
| 1085 |
+
["Der Film war ein emotionales Erlebnis mit großartigen Bildern, einem mitreißenden Soundtrack und einer Geschichte, die zum Nachdenken anregt."],
|
| 1086 |
|
| 1087 |
# Swedish
|
| 1088 |
+
["Filmen var en besvikelse – tråkig handling, överdrivet skådespeleri och ett slut som inte gav något avslut alls."]
|
| 1089 |
]
|
| 1090 |
|
| 1091 |
+
BATCH_SAMPLE = """I love this product! It works perfectly.
|
| 1092 |
+
The service was terrible and slow.
|
| 1093 |
+
Not sure if I like it or not.
|
| 1094 |
+
Amazing quality and fast delivery!
|
| 1095 |
+
Could be better, but it's okay."""
|
|
|
|
|
|
|
| 1096 |
|
| 1097 |
# Gradio Interface
|
| 1098 |
with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Multilingual Sentiment Analyzer") as demo:
|
|
|
|
| 1140 |
gauge_plot = gr.Plot(label="Sentiment Gauge")
|
| 1141 |
bars_plot = gr.Plot(label="Probability Distribution")
|
| 1142 |
|
| 1143 |
+
with gr.Tab("🔬 Advanced Analysis"):
|
| 1144 |
+
with gr.Row():
|
| 1145 |
+
with gr.Column(scale=2):
|
| 1146 |
+
advanced_input = gr.Textbox(
|
| 1147 |
+
label="Text for Advanced Analysis",
|
| 1148 |
+
placeholder="Enter text for explainability analysis...",
|
| 1149 |
+
lines=4
|
| 1150 |
+
)
|
| 1151 |
+
|
| 1152 |
+
with gr.Row():
|
| 1153 |
+
advanced_language = gr.Dropdown(
|
| 1154 |
+
choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German', 'Swedish'],
|
| 1155 |
+
value='Auto Detect',
|
| 1156 |
+
label="Language"
|
| 1157 |
+
)
|
| 1158 |
+
advanced_theme = gr.Dropdown(
|
| 1159 |
+
choices=list(config.THEMES.keys()),
|
| 1160 |
+
value='default',
|
| 1161 |
+
label="Theme"
|
| 1162 |
+
)
|
| 1163 |
+
|
| 1164 |
+
gr.Markdown("### 🔍 Explainability Options")
|
| 1165 |
+
with gr.Row():
|
| 1166 |
+
use_lime = gr.Checkbox(label="Use LIME Analysis", value=True)
|
| 1167 |
+
use_attention = gr.Checkbox(label="Use Attention Weights", value=True)
|
| 1168 |
+
|
| 1169 |
+
lime_features = gr.Slider(
|
| 1170 |
+
minimum=5,
|
| 1171 |
+
maximum=20,
|
| 1172 |
+
value=10,
|
| 1173 |
+
step=1,
|
| 1174 |
+
label="LIME Features Count"
|
| 1175 |
+
)
|
| 1176 |
+
|
| 1177 |
+
advanced_analyze_btn = gr.Button("🔬 Advanced Analyze", variant="primary", size="lg")
|
| 1178 |
+
|
| 1179 |
+
with gr.Column(scale=1):
|
| 1180 |
+
advanced_result_info = gr.Markdown("Configure explainability settings and click Advanced Analyze")
|
| 1181 |
+
|
| 1182 |
+
with gr.Row():
|
| 1183 |
+
advanced_gauge_plot = gr.Plot(label="Sentiment Gauge")
|
| 1184 |
+
advanced_bars_plot = gr.Plot(label="Probability Distribution")
|
| 1185 |
+
|
| 1186 |
+
with gr.Row():
|
| 1187 |
+
lime_plot = gr.Plot(label="LIME Feature Importance")
|
| 1188 |
+
attention_plot = gr.Plot(label="Attention Weights")
|
| 1189 |
+
|
| 1190 |
with gr.Tab("📊 Batch Analysis"):
|
| 1191 |
with gr.Row():
|
| 1192 |
with gr.Column(scale=2):
|
|
|
|
| 1234 |
batch_summary_plot = gr.Plot(label="Sentiment Summary")
|
| 1235 |
batch_confidence_plot = gr.Plot(label="Confidence Distribution")
|
| 1236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1237 |
with gr.Tab("📈 History & Analytics"):
|
| 1238 |
with gr.Row():
|
| 1239 |
with gr.Column():
|
|
|
|
| 1303 |
# Advanced Analysis
|
| 1304 |
advanced_analyze_btn.click(
|
| 1305 |
analyze_advanced_text,
|
| 1306 |
+
inputs=[advanced_input, advanced_language, advanced_theme, use_lime, use_attention, lime_features],
|
| 1307 |
+
outputs=[advanced_result_info, advanced_gauge_plot, advanced_bars_plot, lime_plot, attention_plot]
|
| 1308 |
)
|
| 1309 |
|
| 1310 |
# History & Analytics
|