Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ import plotly.express as px
|
|
| 6 |
from plotly.subplots import make_subplots
|
| 7 |
import numpy as np
|
| 8 |
from wordcloud import WordCloud
|
| 9 |
-
from collections import Counter, defaultdict
|
| 10 |
import re
|
| 11 |
import json
|
| 12 |
import csv
|
|
@@ -23,6 +23,10 @@ from nltk.corpus import stopwords
|
|
| 23 |
import langdetect
|
| 24 |
import pandas as pd
|
| 25 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# Advanced analysis imports
|
| 28 |
import shap
|
|
@@ -38,6 +42,7 @@ class Config:
|
|
| 38 |
MIN_WORD_LENGTH: int = 2
|
| 39 |
CACHE_SIZE: int = 128
|
| 40 |
BATCH_PROCESSING_SIZE: int = 8
|
|
|
|
| 41 |
|
| 42 |
# Supported languages and models
|
| 43 |
SUPPORTED_LANGUAGES = {
|
|
@@ -99,6 +104,8 @@ def memory_cleanup():
|
|
| 99 |
yield
|
| 100 |
finally:
|
| 101 |
gc.collect()
|
|
|
|
|
|
|
| 102 |
|
| 103 |
class ThemeContext:
|
| 104 |
"""Theme management context"""
|
|
@@ -106,9 +113,50 @@ class ThemeContext:
|
|
| 106 |
self.theme = theme
|
| 107 |
self.colors = config.THEMES.get(theme, config.THEMES['default'])
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
class ModelManager:
|
| 111 |
-
"""
|
| 112 |
_instance = None
|
| 113 |
|
| 114 |
def __new__(cls):
|
|
@@ -119,38 +167,64 @@ class ModelManager:
|
|
| 119 |
|
| 120 |
def __init__(self):
|
| 121 |
if not self._initialized:
|
| 122 |
-
self.models = {}
|
| 123 |
-
self.tokenizers = {}
|
| 124 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 125 |
-
self.
|
|
|
|
| 126 |
self._initialized = True
|
|
|
|
| 127 |
|
| 128 |
-
def
|
| 129 |
-
"""Load
|
| 130 |
try:
|
| 131 |
-
|
| 132 |
-
model_name = config.MODELS['multilingual']
|
| 133 |
-
self.tokenizers['default'] = AutoTokenizer.from_pretrained(model_name)
|
| 134 |
-
self.models['default'] = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 135 |
-
self.models['default'].to(self.device)
|
| 136 |
-
logger.info(f"Default model loaded: {model_name}")
|
| 137 |
|
| 138 |
-
# Load
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
except Exception as e:
|
| 146 |
-
logger.error(f"Failed to load
|
| 147 |
raise
|
| 148 |
|
| 149 |
def get_model(self, language='en'):
|
| 150 |
-
"""Get model for specific language"""
|
|
|
|
| 151 |
if language == 'zh':
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
@staticmethod
|
| 156 |
def detect_language(text: str) -> str:
|
|
@@ -192,22 +266,6 @@ class TextProcessor:
|
|
| 192 |
cleaned_words = [w for w in words if w not in STOP_WORDS and len(w) >= config.MIN_WORD_LENGTH]
|
| 193 |
return ' '.join(cleaned_words)
|
| 194 |
|
| 195 |
-
@staticmethod
|
| 196 |
-
def extract_keywords(text: str, top_k: int = 5) -> List[str]:
|
| 197 |
-
"""Extract keywords with language support"""
|
| 198 |
-
if re.search(r'[\u4e00-\u9fff]', text):
|
| 199 |
-
# Chinese text processing
|
| 200 |
-
words = re.findall(r'[\u4e00-\u9fff]+', text)
|
| 201 |
-
all_chars = ''.join(words)
|
| 202 |
-
char_freq = Counter(all_chars)
|
| 203 |
-
return [char for char, _ in char_freq.most_common(top_k)]
|
| 204 |
-
else:
|
| 205 |
-
# Other languages
|
| 206 |
-
cleaned = TextProcessor.clean_text(text)
|
| 207 |
-
words = cleaned.split()
|
| 208 |
-
word_freq = Counter(words)
|
| 209 |
-
return [word for word, _ in word_freq.most_common(top_k)]
|
| 210 |
-
|
| 211 |
@staticmethod
|
| 212 |
def parse_batch_input(text: str) -> List[str]:
|
| 213 |
"""Parse batch input from textarea"""
|
|
@@ -281,16 +339,17 @@ class HistoryManager:
|
|
| 281 |
'most_common_language': Counter(languages).most_common(1)[0][0] if languages else 'en'
|
| 282 |
}
|
| 283 |
|
| 284 |
-
# Core Sentiment Analysis Engine
|
| 285 |
class SentimentEngine:
|
| 286 |
-
"""
|
| 287 |
|
| 288 |
def __init__(self):
|
| 289 |
self.model_manager = ModelManager()
|
|
|
|
| 290 |
|
| 291 |
-
@handle_errors(default_return={'sentiment': 'Unknown', 'confidence': 0.0
|
| 292 |
def analyze_single(self, text: str, language: str = 'auto', preprocessing_options: Dict = None) -> Dict:
|
| 293 |
-
"""
|
| 294 |
if not text.strip():
|
| 295 |
raise ValueError("Empty text provided")
|
| 296 |
|
|
@@ -313,14 +372,19 @@ class SentimentEngine:
|
|
| 313 |
options.get('remove_numbers', False)
|
| 314 |
)
|
| 315 |
|
| 316 |
-
# Tokenize and analyze
|
| 317 |
inputs = tokenizer(processed_text, return_tensors="pt", padding=True,
|
| 318 |
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(self.model_manager.device)
|
| 319 |
|
|
|
|
| 320 |
with torch.no_grad():
|
| 321 |
outputs = model(**inputs)
|
| 322 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
| 323 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
# Handle different model outputs
|
| 325 |
if len(probs) == 3: # negative, neutral, positive
|
| 326 |
sentiment_idx = np.argmax(probs)
|
|
@@ -350,56 +414,77 @@ class SentimentEngine:
|
|
| 350 |
'has_neutral': False
|
| 351 |
}
|
| 352 |
|
| 353 |
-
# Extract basic keywords
|
| 354 |
-
keywords = TextProcessor.extract_keywords(text, 10)
|
| 355 |
-
keyword_tuples = [(word, 0.1) for word in keywords] # Simple keyword extraction
|
| 356 |
-
|
| 357 |
# Add metadata
|
| 358 |
result.update({
|
| 359 |
'language': detected_lang,
|
| 360 |
-
'keywords': keyword_tuples,
|
| 361 |
'word_count': len(text.split()),
|
| 362 |
'char_count': len(text)
|
| 363 |
})
|
| 364 |
|
| 365 |
return result
|
| 366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
@handle_errors(default_return=[])
|
| 368 |
def analyze_batch(self, texts: List[str], language: str = 'auto',
|
| 369 |
preprocessing_options: Dict = None, progress_callback=None) -> List[Dict]:
|
| 370 |
-
"""Optimized batch processing"""
|
| 371 |
if len(texts) > config.BATCH_SIZE_LIMIT:
|
| 372 |
texts = texts[:config.BATCH_SIZE_LIMIT]
|
| 373 |
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
try:
|
| 385 |
-
result =
|
| 386 |
-
result['batch_index'] = len(results)
|
| 387 |
-
result['text'] = text[:100] + '...' if len(text) > 100 else text
|
| 388 |
-
result['full_text'] = text
|
| 389 |
results.append(result)
|
| 390 |
except Exception as e:
|
| 391 |
results.append({
|
| 392 |
'sentiment': 'Error',
|
| 393 |
'confidence': 0.0,
|
| 394 |
-
'error': str(e),
|
| 395 |
-
'batch_index':
|
| 396 |
-
'text':
|
| 397 |
-
'full_text':
|
| 398 |
})
|
| 399 |
|
| 400 |
return results
|
| 401 |
|
| 402 |
-
# Advanced Analysis Engine
|
| 403 |
class AdvancedAnalysisEngine:
|
| 404 |
"""Advanced analysis using SHAP and LIME"""
|
| 405 |
|
|
@@ -410,13 +495,13 @@ class AdvancedAnalysisEngine:
|
|
| 410 |
"""Create prediction function for LIME/SHAP"""
|
| 411 |
def predict_proba(texts):
|
| 412 |
results = []
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
outputs = model(**inputs)
|
| 418 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
| 419 |
-
|
| 420 |
return np.array(results)
|
| 421 |
return predict_proba
|
| 422 |
|
|
@@ -580,7 +665,7 @@ class AdvancedAnalysisEngine:
|
|
| 580 |
logger.error(f"LIME analysis failed: {e}")
|
| 581 |
return f"LIME analysis failed: {str(e)}", None, {}
|
| 582 |
|
| 583 |
-
#
|
| 584 |
class PlotlyVisualizer:
|
| 585 |
"""Enhanced Plotly visualizations"""
|
| 586 |
|
|
@@ -662,43 +747,6 @@ class PlotlyVisualizer:
|
|
| 662 |
|
| 663 |
return fig
|
| 664 |
|
| 665 |
-
@staticmethod
|
| 666 |
-
@handle_errors(default_return=None)
|
| 667 |
-
def create_keyword_chart(keywords: List[Tuple[str, float]], sentiment: str, theme: ThemeContext) -> go.Figure:
|
| 668 |
-
"""Create basic keyword chart"""
|
| 669 |
-
if not keywords:
|
| 670 |
-
fig = go.Figure()
|
| 671 |
-
fig.add_annotation(text="No keywords extracted",
|
| 672 |
-
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
|
| 673 |
-
fig.update_layout(height=400, title="Keywords")
|
| 674 |
-
return fig
|
| 675 |
-
|
| 676 |
-
words = [word for word, score in keywords]
|
| 677 |
-
scores = [score for word, score in keywords]
|
| 678 |
-
|
| 679 |
-
color = theme.colors['pos'] if sentiment == 'Positive' else theme.colors['neg']
|
| 680 |
-
|
| 681 |
-
fig = go.Figure(data=[
|
| 682 |
-
go.Bar(
|
| 683 |
-
y=words,
|
| 684 |
-
x=scores,
|
| 685 |
-
orientation='h',
|
| 686 |
-
marker_color=color,
|
| 687 |
-
text=[f'{score:.3f}' for score in scores],
|
| 688 |
-
textposition='auto'
|
| 689 |
-
)
|
| 690 |
-
])
|
| 691 |
-
|
| 692 |
-
fig.update_layout(
|
| 693 |
-
title=f"Top Keywords ({sentiment})",
|
| 694 |
-
xaxis_title="Frequency Score",
|
| 695 |
-
yaxis_title="Keywords",
|
| 696 |
-
height=400,
|
| 697 |
-
showlegend=False
|
| 698 |
-
)
|
| 699 |
-
|
| 700 |
-
return fig
|
| 701 |
-
|
| 702 |
@staticmethod
|
| 703 |
@handle_errors(default_return=None)
|
| 704 |
def create_batch_summary(results: List[Dict], theme: ThemeContext) -> go.Figure:
|
|
@@ -827,9 +875,8 @@ class DataHandler:
|
|
| 827 |
if format_type == 'csv':
|
| 828 |
writer = csv.writer(temp_file)
|
| 829 |
writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Language',
|
| 830 |
-
'Pos_Prob', 'Neg_Prob', 'Neu_Prob', '
|
| 831 |
for entry in data:
|
| 832 |
-
keywords_str = "|".join([f"{word}:{score:.3f}" for word, score in entry.get('keywords', [])])
|
| 833 |
writer.writerow([
|
| 834 |
entry.get('timestamp', ''),
|
| 835 |
entry.get('text', ''),
|
|
@@ -839,7 +886,6 @@ class DataHandler:
|
|
| 839 |
f"{entry.get('pos_prob', 0):.4f}",
|
| 840 |
f"{entry.get('neg_prob', 0):.4f}",
|
| 841 |
f"{entry.get('neu_prob', 0):.4f}",
|
| 842 |
-
keywords_str,
|
| 843 |
entry.get('word_count', 0)
|
| 844 |
])
|
| 845 |
elif format_type == 'json':
|
|
@@ -881,13 +927,13 @@ class DataHandler:
|
|
| 881 |
|
| 882 |
return content
|
| 883 |
|
| 884 |
-
# Main Application Class
|
| 885 |
class SentimentApp:
|
| 886 |
-
"""
|
| 887 |
|
| 888 |
def __init__(self):
|
| 889 |
self.engine = SentimentEngine()
|
| 890 |
-
self.advanced_engine = AdvancedAnalysisEngine()
|
| 891 |
self.history = HistoryManager()
|
| 892 |
self.data_handler = DataHandler()
|
| 893 |
|
|
@@ -900,12 +946,12 @@ class SentimentApp:
|
|
| 900 |
["Ce film était magnifique, j'ai adoré la réalisation."], # French
|
| 901 |
]
|
| 902 |
|
| 903 |
-
@handle_errors(default_return=("Please enter text", None, None
|
| 904 |
def analyze_single(self, text: str, language: str, theme: str, clean_text: bool,
|
| 905 |
remove_punct: bool, remove_nums: bool):
|
| 906 |
-
"""
|
| 907 |
if not text.strip():
|
| 908 |
-
return "Please enter text", None, None
|
| 909 |
|
| 910 |
# Map display names to language codes
|
| 911 |
language_map = {v: k for k, v in config.SUPPORTED_LANGUAGES.items()}
|
|
@@ -920,7 +966,7 @@ class SentimentApp:
|
|
| 920 |
with memory_cleanup():
|
| 921 |
result = self.engine.analyze_single(text, language_code, preprocessing_options)
|
| 922 |
|
| 923 |
-
# Add to history
|
| 924 |
history_entry = {
|
| 925 |
'text': text[:100] + '...' if len(text) > 100 else text,
|
| 926 |
'full_text': text,
|
|
@@ -930,35 +976,31 @@ class SentimentApp:
|
|
| 930 |
'neg_prob': result.get('neg_prob', 0),
|
| 931 |
'neu_prob': result.get('neu_prob', 0),
|
| 932 |
'language': result['language'],
|
| 933 |
-
'keywords': result['keywords'],
|
| 934 |
'word_count': result['word_count'],
|
| 935 |
'analysis_type': 'single'
|
| 936 |
}
|
| 937 |
self.history.add(history_entry)
|
| 938 |
|
| 939 |
-
# Create visualizations
|
| 940 |
theme_ctx = ThemeContext(theme)
|
| 941 |
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme_ctx)
|
| 942 |
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme_ctx)
|
| 943 |
-
keyword_fig = PlotlyVisualizer.create_keyword_chart(result['keywords'], result['sentiment'], theme_ctx)
|
| 944 |
|
| 945 |
# Create comprehensive result text
|
| 946 |
-
keywords_str = ", ".join([f"{word}({score:.3f})" for word, score in result['keywords'][:5]])
|
| 947 |
-
|
| 948 |
info_text = f"""
|
| 949 |
**Analysis Results:**
|
| 950 |
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
| 951 |
- **Language:** {result['language'].upper()}
|
| 952 |
-
- **Keywords:** {keywords_str}
|
| 953 |
- **Statistics:** {result['word_count']} words, {result['char_count']} characters
|
|
|
|
| 954 |
"""
|
| 955 |
|
| 956 |
-
return info_text, gauge_fig, bars_fig
|
| 957 |
|
| 958 |
@handle_errors(default_return=("Please enter texts", None, None, None))
|
| 959 |
def analyze_batch(self, batch_text: str, language: str, theme: str,
|
| 960 |
clean_text: bool, remove_punct: bool, remove_nums: bool):
|
| 961 |
-
"""Enhanced batch analysis"""
|
| 962 |
if not batch_text.strip():
|
| 963 |
return "Please enter texts (one per line)", None, None, None
|
| 964 |
|
|
@@ -997,7 +1039,6 @@ class SentimentApp:
|
|
| 997 |
'neg_prob': result.get('neg_prob', 0),
|
| 998 |
'neu_prob': result.get('neu_prob', 0),
|
| 999 |
'language': result['language'],
|
| 1000 |
-
'keywords': result['keywords'],
|
| 1001 |
'word_count': result['word_count'],
|
| 1002 |
'analysis_type': 'batch',
|
| 1003 |
'batch_index': result['batch_index']
|
|
@@ -1024,14 +1065,13 @@ class SentimentApp:
|
|
| 1024 |
'Error': result['error']
|
| 1025 |
})
|
| 1026 |
else:
|
| 1027 |
-
keywords_str = ', '.join([word for word, _ in result['keywords'][:3]])
|
| 1028 |
df_data.append({
|
| 1029 |
'Index': result['batch_index'] + 1,
|
| 1030 |
'Text': result['text'],
|
| 1031 |
'Sentiment': result['sentiment'],
|
| 1032 |
'Confidence': f"{result['confidence']:.3f}",
|
| 1033 |
'Language': result['language'].upper(),
|
| 1034 |
-
'
|
| 1035 |
})
|
| 1036 |
|
| 1037 |
df = pd.DataFrame(df_data)
|
|
@@ -1059,7 +1099,7 @@ class SentimentApp:
|
|
| 1059 |
|
| 1060 |
return summary_text, df, summary_fig, confidence_fig
|
| 1061 |
|
| 1062 |
-
#
|
| 1063 |
@handle_errors(default_return=("Please enter text", None))
|
| 1064 |
def analyze_with_shap(self, text: str, language: str):
|
| 1065 |
"""Perform SHAP analysis"""
|
|
@@ -1120,9 +1160,9 @@ class SentimentApp:
|
|
| 1120 |
- **Languages Detected:** {stats['languages_detected']}
|
| 1121 |
"""
|
| 1122 |
|
| 1123 |
-
# Gradio Interface
|
| 1124 |
def create_interface():
|
| 1125 |
-
"""Create comprehensive Gradio interface with
|
| 1126 |
app = SentimentApp()
|
| 1127 |
|
| 1128 |
with gr.Blocks(theme=gr.themes.Soft(), title="Multilingual Sentiment Analyzer") as demo:
|
|
@@ -1169,11 +1209,8 @@ def create_interface():
|
|
| 1169 |
with gr.Row():
|
| 1170 |
gauge_plot = gr.Plot(label="Sentiment Gauge")
|
| 1171 |
probability_plot = gr.Plot(label="Probability Distribution")
|
| 1172 |
-
|
| 1173 |
-
with gr.Row():
|
| 1174 |
-
keyword_plot = gr.Plot(label="Basic Keywords")
|
| 1175 |
|
| 1176 |
-
#
|
| 1177 |
with gr.Tab("Advanced Analysis"):
|
| 1178 |
gr.Markdown("## 🔬 Explainable AI Analysis")
|
| 1179 |
gr.Markdown("Use SHAP and LIME to understand which words and phrases most influence the sentiment prediction.")
|
|
@@ -1246,8 +1283,8 @@ def create_interface():
|
|
| 1246 |
batch_summary = gr.Textbox(label="Batch Summary", lines=8)
|
| 1247 |
batch_results_df = gr.Dataframe(
|
| 1248 |
label="Detailed Results",
|
| 1249 |
-
headers=["Index", "Text", "Sentiment", "Confidence", "Language", "
|
| 1250 |
-
datatype=["number", "str", "str", "str", "str", "
|
| 1251 |
)
|
| 1252 |
|
| 1253 |
with gr.Row():
|
|
@@ -1281,17 +1318,17 @@ def create_interface():
|
|
| 1281 |
csv_download = gr.File(label="CSV Download", visible=True)
|
| 1282 |
json_download = gr.File(label="JSON Download", visible=True)
|
| 1283 |
|
| 1284 |
-
# Event Handlers
|
| 1285 |
|
| 1286 |
-
# Single Analysis
|
| 1287 |
analyze_btn.click(
|
| 1288 |
app.analyze_single,
|
| 1289 |
inputs=[text_input, language_selector, theme_selector,
|
| 1290 |
clean_text_cb, remove_punct_cb, remove_nums_cb],
|
| 1291 |
-
outputs=[result_output, gauge_plot, probability_plot
|
| 1292 |
)
|
| 1293 |
|
| 1294 |
-
# Advanced Analysis
|
| 1295 |
shap_btn.click(
|
| 1296 |
app.analyze_with_shap,
|
| 1297 |
inputs=[advanced_text_input, advanced_language],
|
|
|
|
| 6 |
from plotly.subplots import make_subplots
|
| 7 |
import numpy as np
|
| 8 |
from wordcloud import WordCloud
|
| 9 |
+
from collections import Counter, defaultdict, OrderedDict
|
| 10 |
import re
|
| 11 |
import json
|
| 12 |
import csv
|
|
|
|
| 23 |
import langdetect
|
| 24 |
import pandas as pd
|
| 25 |
import gc
|
| 26 |
+
import threading
|
| 27 |
+
import asyncio
|
| 28 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 29 |
+
import time
|
| 30 |
|
| 31 |
# Advanced analysis imports
|
| 32 |
import shap
|
|
|
|
| 42 |
MIN_WORD_LENGTH: int = 2
|
| 43 |
CACHE_SIZE: int = 128
|
| 44 |
BATCH_PROCESSING_SIZE: int = 8
|
| 45 |
+
MODEL_CACHE_SIZE: int = 2 # Maximum models to keep in memory
|
| 46 |
|
| 47 |
# Supported languages and models
|
| 48 |
SUPPORTED_LANGUAGES = {
|
|
|
|
| 104 |
yield
|
| 105 |
finally:
|
| 106 |
gc.collect()
|
| 107 |
+
if torch.cuda.is_available():
|
| 108 |
+
torch.cuda.empty_cache()
|
| 109 |
|
| 110 |
class ThemeContext:
|
| 111 |
"""Theme management context"""
|
|
|
|
| 113 |
self.theme = theme
|
| 114 |
self.colors = config.THEMES.get(theme, config.THEMES['default'])
|
| 115 |
|
| 116 |
+
class LRUModelCache:
|
| 117 |
+
"""LRU Cache for models with memory management"""
|
| 118 |
+
def __init__(self, max_size: int = 2):
|
| 119 |
+
self.max_size = max_size
|
| 120 |
+
self.cache = OrderedDict()
|
| 121 |
+
self.lock = threading.Lock()
|
| 122 |
+
|
| 123 |
+
def get(self, key):
|
| 124 |
+
with self.lock:
|
| 125 |
+
if key in self.cache:
|
| 126 |
+
# Move to end (most recently used)
|
| 127 |
+
self.cache.move_to_end(key)
|
| 128 |
+
return self.cache[key]
|
| 129 |
+
return None
|
| 130 |
+
|
| 131 |
+
def put(self, key, value):
|
| 132 |
+
with self.lock:
|
| 133 |
+
if key in self.cache:
|
| 134 |
+
self.cache.move_to_end(key)
|
| 135 |
+
else:
|
| 136 |
+
if len(self.cache) >= self.max_size:
|
| 137 |
+
# Remove least recently used
|
| 138 |
+
oldest_key = next(iter(self.cache))
|
| 139 |
+
old_model, old_tokenizer = self.cache.pop(oldest_key)
|
| 140 |
+
# Force cleanup
|
| 141 |
+
del old_model, old_tokenizer
|
| 142 |
+
gc.collect()
|
| 143 |
+
if torch.cuda.is_available():
|
| 144 |
+
torch.cuda.empty_cache()
|
| 145 |
+
|
| 146 |
+
self.cache[key] = value
|
| 147 |
+
|
| 148 |
+
def clear(self):
|
| 149 |
+
with self.lock:
|
| 150 |
+
for model, tokenizer in self.cache.values():
|
| 151 |
+
del model, tokenizer
|
| 152 |
+
self.cache.clear()
|
| 153 |
+
gc.collect()
|
| 154 |
+
if torch.cuda.is_available():
|
| 155 |
+
torch.cuda.empty_cache()
|
| 156 |
+
|
| 157 |
+
# Enhanced Model Manager with Optimized Memory Management
|
| 158 |
class ModelManager:
|
| 159 |
+
"""Optimized multi-language model manager with LRU cache and lazy loading"""
|
| 160 |
_instance = None
|
| 161 |
|
| 162 |
def __new__(cls):
|
|
|
|
| 167 |
|
| 168 |
def __init__(self):
|
| 169 |
if not self._initialized:
|
|
|
|
|
|
|
| 170 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 171 |
+
self.model_cache = LRUModelCache(config.MODEL_CACHE_SIZE)
|
| 172 |
+
self.loading_lock = threading.Lock()
|
| 173 |
self._initialized = True
|
| 174 |
+
logger.info(f"ModelManager initialized on device: {self.device}")
|
| 175 |
|
| 176 |
+
def _load_model(self, model_name: str, cache_key: str):
|
| 177 |
+
"""Load model with memory optimization"""
|
| 178 |
try:
|
| 179 |
+
logger.info(f"Loading model: {model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
# Load with memory optimization
|
| 182 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 183 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 184 |
+
model_name,
|
| 185 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 186 |
+
device_map="auto" if torch.cuda.is_available() else None
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
if not torch.cuda.is_available():
|
| 190 |
+
model.to(self.device)
|
| 191 |
+
|
| 192 |
+
# Set to eval mode to save memory
|
| 193 |
+
model.eval()
|
| 194 |
+
|
| 195 |
+
# Cache the model
|
| 196 |
+
self.model_cache.put(cache_key, (model, tokenizer))
|
| 197 |
+
logger.info(f"Model {model_name} loaded and cached successfully")
|
| 198 |
+
|
| 199 |
+
return model, tokenizer
|
| 200 |
|
| 201 |
except Exception as e:
|
| 202 |
+
logger.error(f"Failed to load model {model_name}: {e}")
|
| 203 |
raise
|
| 204 |
|
| 205 |
def get_model(self, language='en'):
|
| 206 |
+
"""Get model for specific language with lazy loading and caching"""
|
| 207 |
+
# Determine cache key and model name
|
| 208 |
if language == 'zh':
|
| 209 |
+
cache_key = 'zh'
|
| 210 |
+
model_name = config.MODELS['zh']
|
| 211 |
+
else:
|
| 212 |
+
cache_key = 'multilingual'
|
| 213 |
+
model_name = config.MODELS['multilingual']
|
| 214 |
+
|
| 215 |
+
# Try to get from cache first
|
| 216 |
+
cached_model = self.model_cache.get(cache_key)
|
| 217 |
+
if cached_model is not None:
|
| 218 |
+
return cached_model
|
| 219 |
+
|
| 220 |
+
# Load model if not in cache (with thread safety)
|
| 221 |
+
with self.loading_lock:
|
| 222 |
+
# Double-check pattern
|
| 223 |
+
cached_model = self.model_cache.get(cache_key)
|
| 224 |
+
if cached_model is not None:
|
| 225 |
+
return cached_model
|
| 226 |
+
|
| 227 |
+
return self._load_model(model_name, cache_key)
|
| 228 |
|
| 229 |
@staticmethod
|
| 230 |
def detect_language(text: str) -> str:
|
|
|
|
| 266 |
cleaned_words = [w for w in words if w not in STOP_WORDS and len(w) >= config.MIN_WORD_LENGTH]
|
| 267 |
return ' '.join(cleaned_words)
|
| 268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
@staticmethod
|
| 270 |
def parse_batch_input(text: str) -> List[str]:
|
| 271 |
"""Parse batch input from textarea"""
|
|
|
|
| 339 |
'most_common_language': Counter(languages).most_common(1)[0][0] if languages else 'en'
|
| 340 |
}
|
| 341 |
|
| 342 |
+
# Core Sentiment Analysis Engine with Performance Optimizations
|
| 343 |
class SentimentEngine:
|
| 344 |
+
"""Optimized multi-language sentiment analysis engine"""
|
| 345 |
|
| 346 |
def __init__(self):
|
| 347 |
self.model_manager = ModelManager()
|
| 348 |
+
self.executor = ThreadPoolExecutor(max_workers=4)
|
| 349 |
|
| 350 |
+
@handle_errors(default_return={'sentiment': 'Unknown', 'confidence': 0.0})
|
| 351 |
def analyze_single(self, text: str, language: str = 'auto', preprocessing_options: Dict = None) -> Dict:
|
| 352 |
+
"""Optimized single text analysis"""
|
| 353 |
if not text.strip():
|
| 354 |
raise ValueError("Empty text provided")
|
| 355 |
|
|
|
|
| 372 |
options.get('remove_numbers', False)
|
| 373 |
)
|
| 374 |
|
| 375 |
+
# Tokenize and analyze with memory optimization
|
| 376 |
inputs = tokenizer(processed_text, return_tensors="pt", padding=True,
|
| 377 |
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(self.model_manager.device)
|
| 378 |
|
| 379 |
+
# Use no_grad for inference to save memory
|
| 380 |
with torch.no_grad():
|
| 381 |
outputs = model(**inputs)
|
| 382 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
| 383 |
|
| 384 |
+
# Clear GPU cache after inference
|
| 385 |
+
if torch.cuda.is_available():
|
| 386 |
+
torch.cuda.empty_cache()
|
| 387 |
+
|
| 388 |
# Handle different model outputs
|
| 389 |
if len(probs) == 3: # negative, neutral, positive
|
| 390 |
sentiment_idx = np.argmax(probs)
|
|
|
|
| 414 |
'has_neutral': False
|
| 415 |
}
|
| 416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
# Add metadata
|
| 418 |
result.update({
|
| 419 |
'language': detected_lang,
|
|
|
|
| 420 |
'word_count': len(text.split()),
|
| 421 |
'char_count': len(text)
|
| 422 |
})
|
| 423 |
|
| 424 |
return result
|
| 425 |
|
| 426 |
+
def _analyze_text_batch(self, text: str, language: str, preprocessing_options: Dict, index: int) -> Dict:
|
| 427 |
+
"""Single text analysis for batch processing"""
|
| 428 |
+
try:
|
| 429 |
+
result = self.analyze_single(text, language, preprocessing_options)
|
| 430 |
+
result['batch_index'] = index
|
| 431 |
+
result['text'] = text[:100] + '...' if len(text) > 100 else text
|
| 432 |
+
result['full_text'] = text
|
| 433 |
+
return result
|
| 434 |
+
except Exception as e:
|
| 435 |
+
return {
|
| 436 |
+
'sentiment': 'Error',
|
| 437 |
+
'confidence': 0.0,
|
| 438 |
+
'error': str(e),
|
| 439 |
+
'batch_index': index,
|
| 440 |
+
'text': text[:100] + '...' if len(text) > 100 else text,
|
| 441 |
+
'full_text': text
|
| 442 |
+
}
|
| 443 |
+
|
| 444 |
@handle_errors(default_return=[])
|
| 445 |
def analyze_batch(self, texts: List[str], language: str = 'auto',
|
| 446 |
preprocessing_options: Dict = None, progress_callback=None) -> List[Dict]:
|
| 447 |
+
"""Optimized parallel batch processing"""
|
| 448 |
if len(texts) > config.BATCH_SIZE_LIMIT:
|
| 449 |
texts = texts[:config.BATCH_SIZE_LIMIT]
|
| 450 |
|
| 451 |
+
if not texts:
|
| 452 |
+
return []
|
| 453 |
+
|
| 454 |
+
# Pre-load model to avoid race conditions
|
| 455 |
+
self.model_manager.get_model(language if language != 'auto' else 'en')
|
| 456 |
+
|
| 457 |
+
# Use ThreadPoolExecutor for parallel processing
|
| 458 |
+
with ThreadPoolExecutor(max_workers=min(4, len(texts))) as executor:
|
| 459 |
+
futures = []
|
| 460 |
+
for i, text in enumerate(texts):
|
| 461 |
+
future = executor.submit(
|
| 462 |
+
self._analyze_text_batch,
|
| 463 |
+
text, language, preprocessing_options, i
|
| 464 |
+
)
|
| 465 |
+
futures.append(future)
|
| 466 |
|
| 467 |
+
results = []
|
| 468 |
+
for i, future in enumerate(futures):
|
| 469 |
+
if progress_callback:
|
| 470 |
+
progress_callback((i + 1) / len(futures))
|
| 471 |
+
|
| 472 |
try:
|
| 473 |
+
result = future.result(timeout=30) # 30 second timeout per text
|
|
|
|
|
|
|
|
|
|
| 474 |
results.append(result)
|
| 475 |
except Exception as e:
|
| 476 |
results.append({
|
| 477 |
'sentiment': 'Error',
|
| 478 |
'confidence': 0.0,
|
| 479 |
+
'error': f"Timeout or error: {str(e)}",
|
| 480 |
+
'batch_index': i,
|
| 481 |
+
'text': texts[i][:100] + '...' if len(texts[i]) > 100 else texts[i],
|
| 482 |
+
'full_text': texts[i]
|
| 483 |
})
|
| 484 |
|
| 485 |
return results
|
| 486 |
|
| 487 |
+
# Advanced Analysis Engine
|
| 488 |
class AdvancedAnalysisEngine:
|
| 489 |
"""Advanced analysis using SHAP and LIME"""
|
| 490 |
|
|
|
|
| 495 |
"""Create prediction function for LIME/SHAP"""
|
| 496 |
def predict_proba(texts):
|
| 497 |
results = []
|
| 498 |
+
with torch.no_grad():
|
| 499 |
+
for text in texts:
|
| 500 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True,
|
| 501 |
+
truncation=True, max_length=config.MAX_TEXT_LENGTH).to(device)
|
| 502 |
outputs = model(**inputs)
|
| 503 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
| 504 |
+
results.append(probs)
|
| 505 |
return np.array(results)
|
| 506 |
return predict_proba
|
| 507 |
|
|
|
|
| 665 |
logger.error(f"LIME analysis failed: {e}")
|
| 666 |
return f"LIME analysis failed: {str(e)}", None, {}
|
| 667 |
|
| 668 |
+
# Optimized Plotly Visualization System
|
| 669 |
class PlotlyVisualizer:
|
| 670 |
"""Enhanced Plotly visualizations"""
|
| 671 |
|
|
|
|
| 747 |
|
| 748 |
return fig
|
| 749 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 750 |
@staticmethod
|
| 751 |
@handle_errors(default_return=None)
|
| 752 |
def create_batch_summary(results: List[Dict], theme: ThemeContext) -> go.Figure:
|
|
|
|
| 875 |
if format_type == 'csv':
|
| 876 |
writer = csv.writer(temp_file)
|
| 877 |
writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Language',
|
| 878 |
+
'Pos_Prob', 'Neg_Prob', 'Neu_Prob', 'Word_Count'])
|
| 879 |
for entry in data:
|
|
|
|
| 880 |
writer.writerow([
|
| 881 |
entry.get('timestamp', ''),
|
| 882 |
entry.get('text', ''),
|
|
|
|
| 886 |
f"{entry.get('pos_prob', 0):.4f}",
|
| 887 |
f"{entry.get('neg_prob', 0):.4f}",
|
| 888 |
f"{entry.get('neu_prob', 0):.4f}",
|
|
|
|
| 889 |
entry.get('word_count', 0)
|
| 890 |
])
|
| 891 |
elif format_type == 'json':
|
|
|
|
| 927 |
|
| 928 |
return content
|
| 929 |
|
| 930 |
+
# Main Application Class - Optimized
|
| 931 |
class SentimentApp:
|
| 932 |
+
"""Optimized multilingual sentiment analysis application"""
|
| 933 |
|
| 934 |
def __init__(self):
|
| 935 |
self.engine = SentimentEngine()
|
| 936 |
+
self.advanced_engine = AdvancedAnalysisEngine()
|
| 937 |
self.history = HistoryManager()
|
| 938 |
self.data_handler = DataHandler()
|
| 939 |
|
|
|
|
| 946 |
["Ce film était magnifique, j'ai adoré la réalisation."], # French
|
| 947 |
]
|
| 948 |
|
| 949 |
+
@handle_errors(default_return=("Please enter text", None, None))
|
| 950 |
def analyze_single(self, text: str, language: str, theme: str, clean_text: bool,
|
| 951 |
remove_punct: bool, remove_nums: bool):
|
| 952 |
+
"""Optimized single text analysis without keyword extraction"""
|
| 953 |
if not text.strip():
|
| 954 |
+
return "Please enter text", None, None
|
| 955 |
|
| 956 |
# Map display names to language codes
|
| 957 |
language_map = {v: k for k, v in config.SUPPORTED_LANGUAGES.items()}
|
|
|
|
| 966 |
with memory_cleanup():
|
| 967 |
result = self.engine.analyze_single(text, language_code, preprocessing_options)
|
| 968 |
|
| 969 |
+
# Add to history (without keywords)
|
| 970 |
history_entry = {
|
| 971 |
'text': text[:100] + '...' if len(text) > 100 else text,
|
| 972 |
'full_text': text,
|
|
|
|
| 976 |
'neg_prob': result.get('neg_prob', 0),
|
| 977 |
'neu_prob': result.get('neu_prob', 0),
|
| 978 |
'language': result['language'],
|
|
|
|
| 979 |
'word_count': result['word_count'],
|
| 980 |
'analysis_type': 'single'
|
| 981 |
}
|
| 982 |
self.history.add(history_entry)
|
| 983 |
|
| 984 |
+
# Create visualizations (only gauge and probability bars)
|
| 985 |
theme_ctx = ThemeContext(theme)
|
| 986 |
gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme_ctx)
|
| 987 |
bars_fig = PlotlyVisualizer.create_probability_bars(result, theme_ctx)
|
|
|
|
| 988 |
|
| 989 |
# Create comprehensive result text
|
|
|
|
|
|
|
| 990 |
info_text = f"""
|
| 991 |
**Analysis Results:**
|
| 992 |
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
|
| 993 |
- **Language:** {result['language'].upper()}
|
|
|
|
| 994 |
- **Statistics:** {result['word_count']} words, {result['char_count']} characters
|
| 995 |
+
- **Probabilities:** Positive: {result.get('pos_prob', 0):.3f}, Negative: {result.get('neg_prob', 0):.3f}, Neutral: {result.get('neu_prob', 0):.3f}
|
| 996 |
"""
|
| 997 |
|
| 998 |
+
return info_text, gauge_fig, bars_fig
|
| 999 |
|
| 1000 |
@handle_errors(default_return=("Please enter texts", None, None, None))
|
| 1001 |
def analyze_batch(self, batch_text: str, language: str, theme: str,
|
| 1002 |
clean_text: bool, remove_punct: bool, remove_nums: bool):
|
| 1003 |
+
"""Enhanced batch analysis with parallel processing"""
|
| 1004 |
if not batch_text.strip():
|
| 1005 |
return "Please enter texts (one per line)", None, None, None
|
| 1006 |
|
|
|
|
| 1039 |
'neg_prob': result.get('neg_prob', 0),
|
| 1040 |
'neu_prob': result.get('neu_prob', 0),
|
| 1041 |
'language': result['language'],
|
|
|
|
| 1042 |
'word_count': result['word_count'],
|
| 1043 |
'analysis_type': 'batch',
|
| 1044 |
'batch_index': result['batch_index']
|
|
|
|
| 1065 |
'Error': result['error']
|
| 1066 |
})
|
| 1067 |
else:
|
|
|
|
| 1068 |
df_data.append({
|
| 1069 |
'Index': result['batch_index'] + 1,
|
| 1070 |
'Text': result['text'],
|
| 1071 |
'Sentiment': result['sentiment'],
|
| 1072 |
'Confidence': f"{result['confidence']:.3f}",
|
| 1073 |
'Language': result['language'].upper(),
|
| 1074 |
+
'Word_Count': result.get('word_count', 0)
|
| 1075 |
})
|
| 1076 |
|
| 1077 |
df = pd.DataFrame(df_data)
|
|
|
|
| 1099 |
|
| 1100 |
return summary_text, df, summary_fig, confidence_fig
|
| 1101 |
|
| 1102 |
+
# Advanced analysis methods
|
| 1103 |
@handle_errors(default_return=("Please enter text", None))
|
| 1104 |
def analyze_with_shap(self, text: str, language: str):
|
| 1105 |
"""Perform SHAP analysis"""
|
|
|
|
| 1160 |
- **Languages Detected:** {stats['languages_detected']}
|
| 1161 |
"""
|
| 1162 |
|
| 1163 |
+
# Optimized Gradio Interface
|
| 1164 |
def create_interface():
|
| 1165 |
+
"""Create comprehensive Gradio interface with optimizations"""
|
| 1166 |
app = SentimentApp()
|
| 1167 |
|
| 1168 |
with gr.Blocks(theme=gr.themes.Soft(), title="Multilingual Sentiment Analyzer") as demo:
|
|
|
|
| 1209 |
with gr.Row():
|
| 1210 |
gauge_plot = gr.Plot(label="Sentiment Gauge")
|
| 1211 |
probability_plot = gr.Plot(label="Probability Distribution")
|
|
|
|
|
|
|
|
|
|
| 1212 |
|
| 1213 |
+
# Advanced Analysis Tab
|
| 1214 |
with gr.Tab("Advanced Analysis"):
|
| 1215 |
gr.Markdown("## 🔬 Explainable AI Analysis")
|
| 1216 |
gr.Markdown("Use SHAP and LIME to understand which words and phrases most influence the sentiment prediction.")
|
|
|
|
| 1283 |
batch_summary = gr.Textbox(label="Batch Summary", lines=8)
|
| 1284 |
batch_results_df = gr.Dataframe(
|
| 1285 |
label="Detailed Results",
|
| 1286 |
+
headers=["Index", "Text", "Sentiment", "Confidence", "Language", "Word_Count"],
|
| 1287 |
+
datatype=["number", "str", "str", "str", "str", "number"]
|
| 1288 |
)
|
| 1289 |
|
| 1290 |
with gr.Row():
|
|
|
|
| 1318 |
csv_download = gr.File(label="CSV Download", visible=True)
|
| 1319 |
json_download = gr.File(label="JSON Download", visible=True)
|
| 1320 |
|
| 1321 |
+
# Event Handlers - Updated for optimized single analysis
|
| 1322 |
|
| 1323 |
+
# Single Analysis (removed keyword_plot output)
|
| 1324 |
analyze_btn.click(
|
| 1325 |
app.analyze_single,
|
| 1326 |
inputs=[text_input, language_selector, theme_selector,
|
| 1327 |
clean_text_cb, remove_punct_cb, remove_nums_cb],
|
| 1328 |
+
outputs=[result_output, gauge_plot, probability_plot]
|
| 1329 |
)
|
| 1330 |
|
| 1331 |
+
# Advanced Analysis
|
| 1332 |
shap_btn.click(
|
| 1333 |
app.analyze_with_shap,
|
| 1334 |
inputs=[advanced_text_input, advanced_language],
|