Spaces:
Runtime error
Runtime error
Charles Lin
commited on
Commit
·
9b78f9c
1
Parent(s):
bb4bb43
Generation working. Todo: model edits; add model checkpoints. Also, we are only loading an editable model upon switching algs but we should load it when the page loads
Browse files- algs/serac.py +4 -2
- app.py +15 -4
algs/serac.py
CHANGED
|
@@ -306,13 +306,15 @@ class SERAC(EditableModel):
|
|
| 306 |
|
| 307 |
def generate(self, *args, **kwargs):
|
| 308 |
# input_text = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)
|
|
|
|
|
|
|
| 309 |
base_generate_fn = (
|
| 310 |
self.model.forward if type(self.model) == BertClassifier
|
| 311 |
-
else lambda *args, **kwargs: self.model.generate(*args, **kwargs
|
| 312 |
)
|
| 313 |
cntr_generate_fn = (
|
| 314 |
self.replacement.forward if type(self.replacement) == BertClassifier
|
| 315 |
-
else lambda *args, **kwargs: self.replacement.generate(*args, **kwargs
|
| 316 |
)
|
| 317 |
|
| 318 |
# assert len(args) == 0, "Should only pass named arguments to generate()"
|
|
|
|
| 306 |
|
| 307 |
def generate(self, *args, **kwargs):
|
| 308 |
# input_text = self.replacement_tok.batch_decode(kwargs["input_ids"], skip_special_tokens=True)
|
| 309 |
+
if "max_new_tokens" not in kwargs:
|
| 310 |
+
kwargs["max_new_tokens"] = 20
|
| 311 |
base_generate_fn = (
|
| 312 |
self.model.forward if type(self.model) == BertClassifier
|
| 313 |
+
else lambda *args, **kwargs: self.model.generate(*args, **kwargs)
|
| 314 |
)
|
| 315 |
cntr_generate_fn = (
|
| 316 |
self.replacement.forward if type(self.replacement) == BertClassifier
|
| 317 |
+
else lambda *args, **kwargs: self.replacement.generate(*args, **kwargs)
|
| 318 |
)
|
| 319 |
|
| 320 |
# assert len(args) == 0, "Should only pass named arguments to generate()"
|
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
import time
|
| 4 |
import importlib
|
|
|
|
| 5 |
|
| 6 |
import algs
|
| 7 |
import config
|
|
@@ -17,6 +18,11 @@ EDIT_ALGS = [
|
|
| 17 |
"LU: Lookup Cache",
|
| 18 |
]
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def reset():
|
| 21 |
st.session_state.edits.drop(st.session_state.edits.index, inplace=True)
|
| 22 |
st.session_state.model_outputs.drop(st.session_state.edits.index, inplace=True)
|
|
@@ -28,10 +34,10 @@ def reset():
|
|
| 28 |
alg_abbrv = selected_alg[:selected_alg.index(":")]
|
| 29 |
alg_module = importlib.import_module(f"algs.{alg_abbrv.lower()}")
|
| 30 |
alg_class = getattr(alg_module, alg_abbrv.upper())
|
| 31 |
-
|
| 32 |
st.session_state.editable_model = alg_class(
|
| 33 |
st.session_state.model,
|
| 34 |
-
|
| 35 |
lambda: copy.deepcopy(st.session_state.model),
|
| 36 |
).eval()
|
| 37 |
|
|
@@ -42,7 +48,10 @@ def apply_edit():
|
|
| 42 |
|
| 43 |
def sample_model():
|
| 44 |
input_str = str(test_input)
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
| 46 |
n_edits = len(st.session_state.edits)
|
| 47 |
alg_name = st.session_state.alg_selector
|
| 48 |
alg_abbrv = alg_name[:alg_name.index(":")]
|
|
@@ -55,9 +64,11 @@ if "init" not in st.session_state:
|
|
| 55 |
st.session_state.edits = pd.DataFrame([], columns=["Edit input", "Edit label"])
|
| 56 |
st.session_state.model_outputs = pd.DataFrame([], columns=["Input", "Output", "N edits", "Alg"])
|
| 57 |
st.session_state.init = True
|
|
|
|
|
|
|
| 58 |
with st.spinner('Loading model...'):
|
| 59 |
st.session_state.tokenizer = AutoTokenizer.from_pretrained("google/t5-large-ssm-nq")
|
| 60 |
-
st.session_state.model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-large-ssm-nq").eval()
|
| 61 |
st.session_state.editable_model = None
|
| 62 |
|
| 63 |
########################
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import time
|
| 4 |
import importlib
|
| 5 |
+
from torch.cuda import is_available as use_cuda
|
| 6 |
|
| 7 |
import algs
|
| 8 |
import config
|
|
|
|
| 18 |
"LU: Lookup Cache",
|
| 19 |
]
|
| 20 |
|
| 21 |
+
def generate(ids):
|
| 22 |
+
output_ids = st.session_state.editable_model.generate(input_ids=ids, max_new_tokens=20, min_length=1,
|
| 23 |
+
num_return_sequences=1, num_beams=3)
|
| 24 |
+
return st.session_state.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 25 |
+
|
| 26 |
def reset():
|
| 27 |
st.session_state.edits.drop(st.session_state.edits.index, inplace=True)
|
| 28 |
st.session_state.model_outputs.drop(st.session_state.edits.index, inplace=True)
|
|
|
|
| 34 |
alg_abbrv = selected_alg[:selected_alg.index(":")]
|
| 35 |
alg_module = importlib.import_module(f"algs.{alg_abbrv.lower()}")
|
| 36 |
alg_class = getattr(alg_module, alg_abbrv.upper())
|
| 37 |
+
st.session_state.config = getattr(config, f"{alg_abbrv.lower()}_config")
|
| 38 |
st.session_state.editable_model = alg_class(
|
| 39 |
st.session_state.model,
|
| 40 |
+
st.session_state.config,
|
| 41 |
lambda: copy.deepcopy(st.session_state.model),
|
| 42 |
).eval()
|
| 43 |
|
|
|
|
| 48 |
|
| 49 |
def sample_model():
|
| 50 |
input_str = str(test_input)
|
| 51 |
+
with st.spinner('Generating completion...'):
|
| 52 |
+
encoding = st.session_state.tokenizer(input_str, return_tensors="pt")
|
| 53 |
+
ids = encoding["input_ids"].to(st.session_state.device)
|
| 54 |
+
model_output = generate(ids)
|
| 55 |
n_edits = len(st.session_state.edits)
|
| 56 |
alg_name = st.session_state.alg_selector
|
| 57 |
alg_abbrv = alg_name[:alg_name.index(":")]
|
|
|
|
| 64 |
st.session_state.edits = pd.DataFrame([], columns=["Edit input", "Edit label"])
|
| 65 |
st.session_state.model_outputs = pd.DataFrame([], columns=["Input", "Output", "N edits", "Alg"])
|
| 66 |
st.session_state.init = True
|
| 67 |
+
st.session_state.config = None
|
| 68 |
+
st.session_state.device = "cuda" if use_cuda() else "cpu"
|
| 69 |
with st.spinner('Loading model...'):
|
| 70 |
st.session_state.tokenizer = AutoTokenizer.from_pretrained("google/t5-large-ssm-nq")
|
| 71 |
+
st.session_state.model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-large-ssm-nq").to(st.session_state.device).eval()
|
| 72 |
st.session_state.editable_model = None
|
| 73 |
|
| 74 |
########################
|