Spaces:
Running
Running
File size: 6,649 Bytes
b816136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
"""
core/vector_store.py
------------------------------------------------------------
Unified FAISS + BM25 storage utility for Clinical-Trial Chatbot.
✅ Works with glossary.json or FAISS metadata
✅ Returns normalized dicts for hybrid_retriever
✅ Adds load_all_text_chunks() for BM25 fallback
✅ Safe against missing files
"""
import os
import re
import json
import faiss
from sentence_transformers import SentenceTransformer
# Globals used by retriever
_index = None
_model = None
_meta = None
# --------------------------------------------------------------------
# 1️⃣ Utility: load FAISS index + metadata (MVP version)
# --------------------------------------------------------------------
def _ensure_faiss_index():
"""Load FAISS index and metadata — prefer local persistent files, fallback to Hugging Face dataset."""
global _index, _model, _meta
if _index is not None and _meta is not None:
return True
import json
from huggingface_hub import hf_hub_download
local_dir = "/home/user/app/persistent"
local_index = os.path.join(local_dir, "faiss.index")
local_meta = os.path.join(local_dir, "faiss.index.meta.json")
# 1️⃣ Prefer local FAISS (rebuilt and includes URL + Excel)
if os.path.exists(local_index) and os.path.exists(local_meta):
print("📂 Using local FAISS index (includes Excel + Web sources).")
_index = faiss.read_index(local_index)
with open(local_meta, "r", encoding="utf-8") as f:
_meta = json.load(f)
_model = SentenceTransformer("all-MiniLM-L6-v2")
print(f"✅ [vector_store] Loaded local FAISS ({len(_meta)} vectors).")
return True
# 2️⃣ Fallback: remote dataset
print("☁️ Local FAISS missing — downloading from Hugging Face dataset...")
repo_id = "essprasad/CT-Chat-Index"
repo_type = "dataset"
runtime_dir = "/home/user/app/runtime_faiss"
os.makedirs(runtime_dir, exist_ok=True)
index_path = hf_hub_download(
repo_id=repo_id,
filename="persistent/faiss.index",
repo_type=repo_type,
local_dir=runtime_dir,
cache_dir=runtime_dir,
force_download=True,
)
meta_path = hf_hub_download(
repo_id=repo_id,
filename="persistent/faiss.index.meta.json",
repo_type=repo_type,
local_dir=runtime_dir,
cache_dir=runtime_dir,
force_download=True,
)
print(f"🧠 [vector_store] Loading FAISS index + metadata from {runtime_dir} ...")
_index = faiss.read_index(index_path)
with open(meta_path, "r", encoding="utf-8") as f:
_meta = json.load(f)
_model = SentenceTransformer("all-MiniLM-L6-v2")
print(f"✅ [vector_store] Loaded remote FAISS ({len(_meta)} vectors).")
return True
# --------------------------------------------------------------------
# 2️⃣ Helper: Load all text chunks (for BM25 fallback)
# --------------------------------------------------------------------
def load_all_text_chunks():
"""
Return list of dicts for BM25 fallback and inspection.
Each dict: {'text', 'file', 'source', 'term', '_meta'}
"""
meta_path = os.path.join("persistent", "faiss.index.meta.json")
gloss_path = os.path.join("persistent", "glossary.json")
docs = []
# Prefer FAISS meta (vector_sync output)
if os.path.exists(meta_path):
try:
with open(meta_path, "r", encoding="utf-8") as f:
meta = json.load(f)
for m in meta:
text = m.get("definition") or m.get("text") or m.get("chunk") or ""
sources = m.get("sources") or m.get("source") or m.get("file") or []
if isinstance(sources, list) and sources:
src = sources[0]
elif isinstance(sources, str) and sources:
src = sources
else:
src = m.get("file") or m.get("source") or "unknown"
docs.append({
"text": text,
"file": src,
"source": src,
"term": m.get("term") or m.get("normalized") or "",
"_meta": m
})
return docs
except Exception as e:
print(f"⚠️ [vector_store] Failed to read meta.json: {e}")
# fallback: glossary.json
if os.path.exists(gloss_path):
try:
with open(gloss_path, "r", encoding="utf-8") as f:
gloss = json.load(f)
for k, v in gloss.items():
term = v.get("term", k)
definition = v.get("definition", "")
srcs = v.get("sources", [])
src = srcs[0] if isinstance(srcs, list) and srcs else (srcs if isinstance(srcs, str) else "glossary")
docs.append({
"text": definition,
"file": src,
"source": src,
"term": term,
"_meta": {"glossary_key": k}
})
return docs
except Exception as e:
print(f"⚠️ [vector_store] Failed to read glossary.json: {e}")
return docs
# --------------------------------------------------------------------
# 3️⃣ FAISS Search
# --------------------------------------------------------------------
def search_index(query, top_k=10):
"""
Search FAISS and return a list of dict hits for hybrid_retriever.
Each hit: {'text','file','source','term','_score','_meta'}
"""
global _index, _model, _meta
if not _ensure_faiss_index():
return []
q_emb = _model.encode([query], convert_to_numpy=True).astype("float32")
faiss.normalize_L2(q_emb)
D, I = _index.search(q_emb, top_k)
results = []
for score, idx in zip(D[0].tolist(), I[0].tolist()):
if idx < 0 or idx >= len(_meta):
continue
m = _meta[idx] if isinstance(_meta[idx], dict) else {"raw": str(_meta[idx])}
text = m.get("definition") or m.get("text") or m.get("chunk") or ""
srcs = m.get("sources") or m.get("source") or m.get("file") or []
if isinstance(srcs, list) and srcs:
src = srcs[0]
elif isinstance(srcs, str) and srcs:
src = srcs
else:
src = m.get("file") or m.get("source") or "unknown"
results.append({
"text": text,
"file": src,
"source": src,
"term": m.get("term") or m.get("normalized") or "",
"_score": float(score),
"_meta": m
})
return results
|