Spaces:
Running
Running
File size: 7,592 Bytes
b816136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
"""
core/vector_sync.py
------------------------------------------------------------
Handles FAISS index rebuild + upload to Hugging Face dataset
without caching, optimized for limited HF Space storage.
"""
import os
import re
import json
import faiss
import numpy as np
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download, upload_file, HfFolder
from sentence_transformers import SentenceTransformer
from nltk.stem import WordNetLemmatizer
from core.van_normalizer import normalize_to_van
# ==========================================================
# Helper: Upload FAISS index + metadata to dataset safely
# ==========================================================
from huggingface_hub import HfApi
def _upload_to_dataset(index_path: str, meta_path: str, repo_id: str):
"""
Upload FAISS index + metadata to Hugging Face dataset safely.
Used by rebuild_index() in app.py.
"""
try:
print(f"🚀 [vector_sync] Uploading FAISS index + metadata to {repo_id}...")
api = HfApi()
for path in [index_path, meta_path]:
if not os.path.exists(path):
print(f"⚠️ [vector_sync] Skipping {os.path.basename(path)} (not found locally).")
continue
api.upload_file(
path_or_fileobj=path,
path_in_repo=f"persistent/{os.path.basename(path)}",
repo_id=repo_id,
repo_type="dataset",
commit_message=f"Auto-upload {os.path.basename(path)}",
)
print(f"✅ [vector_sync] Uploaded {os.path.basename(path)}")
except Exception as e:
print(f"⚠️ [vector_sync] Upload failed: {e}")
# --------------------------------------------------------------------
# ⚙️ CONFIGURATION
# --------------------------------------------------------------------
REPO_ID = "essprasad/CT-Chat-Index"
REPO_TYPE = "dataset"
REMOTE_DIR = "persistent/"
FILES = ["faiss.index", "faiss.index.meta.json"]
api = HfApi()
token = HfFolder.get_token() or os.getenv("HF_TOKEN")
# --------------------------------------------------------------------
# 🔹 NORMALIZATION HELPERS
# --------------------------------------------------------------------
lemmatizer = WordNetLemmatizer()
def normalize_for_index(term: str) -> str:
"""Normalize term for embedding."""
if not term:
return ""
s = term.lower().strip()
s = re.sub(r"[\-_/\\.,;:()]+", " ", s)
s = re.sub(r"\s+", " ", s)
words = s.split()
s = " ".join([lemmatizer.lemmatize(w) for w in words])
return s.strip()
def prepare_text_for_embedding(term: str, definition: str) -> str:
"""Prepare text for embedding with VAN normalization."""
if not term:
return ""
t = term.lower().strip()
t = re.sub(r"[^\w\s-]", " ", t)
d = re.sub(r"\s+", " ", definition.strip())
t_van = normalize_to_van(t)
return f"{t_van}. {d}".strip()
# --------------------------------------------------------------------
# 🔹 1. IMPORT: Download FAISS from Hub (on-demand)
# --------------------------------------------------------------------
def auto_import_from_hub(force=False):
print(f"📥 [vector_sync] Checking for FAISS index on {REPO_ID}...")
try:
for fname in FILES:
print(f"⬇️ Downloading {fname} ...")
hf_hub_download(
repo_id=REPO_ID,
filename=f"{REMOTE_DIR}{fname}",
repo_type=REPO_TYPE,
local_dir="/home/user/app/tmp",
cache_dir="/home/user/app/tmp",
local_dir_use_symlinks=False,
token=token,
force_download=True,
)
print("✅ FAISS index + metadata downloaded.")
except Exception as e:
print(f"⚠️ [vector_sync] Could not import FAISS files: {e}")
# --------------------------------------------------------------------
# 🔹 2. EXPORT: Upload FAISS to Hub
# --------------------------------------------------------------------
def auto_export_to_hub(commit_msg="Auto-sync after rebuild"):
"""Uploads FAISS index + metadata from /tmp/ to the dataset."""
if not token:
print("⚠️ [vector_sync] No HF token found. Skipping upload.")
return
print(f"🚀 [vector_sync] Uploading FAISS index + metadata to {REPO_ID}...")
try:
api.upload_file(
path_or_fileobj="/home/user/app/tmp/faiss.index",
path_in_repo="persistent/faiss.index",
repo_id=REPO_ID,
repo_type=REPO_TYPE,
token=token,
commit_message=commit_msg,
)
api.upload_file(
path_or_fileobj="/home/user/app/tmp/faiss.index.meta.json",
path_in_repo="persistent/faiss.index.meta.json",
repo_id=REPO_ID,
repo_type=REPO_TYPE,
token=token,
commit_message=commit_msg,
)
print("✅ [vector_sync] Upload complete.")
except Exception as e:
print(f"⚠️ [vector_sync] Upload failed: {e}")
# --------------------------------------------------------------------
# 🔹 3. REBUILD: Create FAISS from glossary.json
# --------------------------------------------------------------------
def rebuild_faiss_from_glossary(
glossary_path="/home/user/app/persistent/glossary.json",
model_name="all-MiniLM-L6-v2",
):
"""Rebuild FAISS index from glossary.json (no caching, low footprint)."""
try:
print(f"🧠 [vector_sync] Rebuilding FAISS from: {glossary_path}")
if not os.path.isfile(glossary_path):
print(f"⚠️ Glossary not found: {glossary_path}")
return None, None
with open(glossary_path, "r", encoding="utf-8") as f:
glossary = json.load(f)
print(f"📘 Loaded {len(glossary)} glossary entries.")
model = SentenceTransformer(model_name)
texts, metas = [], []
for k, v in glossary.items():
term = v.get("term", k)
definition = v.get("definition", "")
sources = v.get("sources", [])
if not definition.strip():
continue
combined = prepare_text_for_embedding(term, definition)
texts.append(combined)
metas.append({"term": term, "definition": definition, "sources": sources})
if not texts:
print("⚠️ No valid glossary entries for embedding.")
return None, None
print(f"🧩 Encoding {len(texts)} entries with {model_name}...")
embeddings = model.encode(texts, show_progress_bar=True, convert_to_numpy=True).astype("float32")
faiss.normalize_L2(embeddings)
dim = embeddings.shape[1]
index = faiss.IndexFlatIP(dim)
index.add(embeddings)
tmp_dir = "/home/user/app/tmp"
os.makedirs(tmp_dir, exist_ok=True)
tmp_index = os.path.join(tmp_dir, "faiss.index")
tmp_meta = os.path.join(tmp_dir, "faiss.index.meta.json")
faiss.write_index(index, tmp_index)
with open(tmp_meta, "w", encoding="utf-8") as f:
json.dump(metas, f, indent=2, ensure_ascii=False)
# Upload and cleanup
auto_export_to_hub("Glossary-based FAISS rebuild")
os.remove(tmp_index)
os.remove(tmp_meta)
print(f"✅ [vector_sync] Rebuild complete — {len(texts)} vectors uploaded to dataset.")
return index, metas
except Exception as e:
print(f"⚠️ Error in rebuild_faiss_from_glossary: {e}")
return None, None
|