File size: 14,489 Bytes
7829d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c345d
 
 
 
 
7829d29
 
 
 
44c345d
 
 
 
 
7829d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# ==========================================================
# SAFE-MODE PRELAUNCH CLEANUP
# ==========================================================
import os
import shutil
import time
import glob

# Prevent Svelte/Gradio SSR locale warning early
os.environ["GRADIO_LOCALE"] = "en"


def _prelaunch_cleanup(threshold_gb: float = 45.0):
    """Pre-clean to avoid HF Spaces eviction while being conservative about persistent data."""
    def _used_gb(path="/home/user/app"):
        try:
            total, used, free = shutil.disk_usage(path)
            return round(min(used / (1024**3), 49.9), 2)
        except Exception:
            return 0.0

    used = _used_gb()
    print(f"\n💾 Startup disk usage: {used:.2f} GB")

    # Only perform aggressive cleanup when over threshold.
    if used > threshold_gb:
        print(f"⚠️ Usage {used:.2f} GB > {threshold_gb} GB — performing aggressive cleanup.")
        # preserve persistent / important artifacts by default
        preserve = {"faiss.index", "faiss.index.meta.json", "glossary.json"}
        for folder in ["/home/user/app/data/docs_cache", "/home/user/app/tmp_docs"]:
            if os.path.exists(folder):
                for f in glob.glob(os.path.join(folder, "*")):
                    name = os.path.basename(f)
                    if name in preserve:
                        continue
                    try:
                        if os.path.isdir(f):
                            shutil.rmtree(f, ignore_errors=True)
                        else:
                            os.remove(f)
                    except Exception:
                        pass
        print("🧹 Aggressive cleanup complete.")

    print(f"✨ Disk after cleanup: {_used_gb():.2f} GB\n")


_prelaunch_cleanup()


# ==========================================================
# MAIN APP — Clinical Trial Chatbot
# ==========================================================
import gradio as gr
from core.hybrid_retriever import summarize_combined

APP_TITLE = "🧠 Clinical Research Chatbot"
APP_DESC = (
    "Ask any clinical research or GCP-related question. "
    "Retrieves and summarizes from ICH, GCDMP, EMA, FDA, Excel, and Web datasets."
)


# ----------------------------------------------------------
# MODE & CREDENTIALS
# ----------------------------------------------------------
PUBLIC_MODE = os.environ.get("PUBLIC_MODE", "true").lower() == "true"
ADMIN_USER = os.environ.get("ADMIN_USER", "admin")
ADMIN_PASS = os.environ.get("ADMIN_PASS", "changeme")

print(f"🔐 Running in {'PUBLIC' if PUBLIC_MODE else 'ADMIN'} mode.")
print(f"🌍 Locale set to: {os.environ.get('GRADIO_LOCALE','en')}")
print(f"🧩 Env vars loaded: PUBLIC_MODE={PUBLIC_MODE}, ADMIN_USER={ADMIN_USER}")


# ----------------------------------------------------------
# AUTH HELPER
# ----------------------------------------------------------
def check_admin_login(username, password):
    return username == ADMIN_USER and password == ADMIN_PASS


# ----------------------------------------------------------
# MAINTENANCE FUNCTIONS
# ----------------------------------------------------------
import json
import faiss
import pandas as pd
import numpy as np
import shutil as _shutil  # alias to avoid shadowed name
from sentence_transformers import SentenceTransformer
from core.vector_sync import rebuild_faiss_from_glossary, _upload_to_dataset
from huggingface_hub import hf_hub_download, list_repo_files

DATA_PATHS = [
    "/home/user/app/persistent/faiss.index",
    "/home/user/app/persistent/faiss.index.meta.json",
    "/home/user/app/data/docs_cache",
]


def clear_index():
    removed = []
    for p in DATA_PATHS:
        if os.path.isdir(p):
            _shutil.rmtree(p, ignore_errors=True)
            removed.append(f"🗑️ Deleted folder: {p}")
        elif os.path.exists(p):
            os.remove(p)
            removed.append(f"🗑️ Deleted file: {p}")
    msg = "\n".join(removed) if removed else "ℹ️ No cache files found."
    print(msg)
    return msg


def rebuild_index():
    """Rebuild FAISS index from glossary + Excel + web."""
    try:
        import os
        import json
        import pandas as pd
        import faiss
        import numpy as np
        from sentence_transformers import SentenceTransformer

        from core.web_loader import web_crawler_loader  # may raise; handled below

        repo_id_index = "essprasad/CT-Chat-Index"
        repo_id_docs = "essprasad/CT-Chat-Docs"
        local_dir = "/home/user/app/persistent"
        os.makedirs(local_dir, exist_ok=True)

        print("🧠 Rebuilding FAISS index (Glossary + Excel + Web)…")

        # --- Ensure glossary.json exists (download if missing)
        glossary_path = os.path.join(local_dir, "glossary.json")
        if not os.path.exists(glossary_path):
            try:
                print("📥 glossary.json missing locally — downloading from HF index dataset...")
                downloaded = hf_hub_download(repo_id=repo_id_index, filename="persistent/glossary.json", repo_type="dataset")
                # copy to local persistent path
                _shutil.copy2(downloaded, glossary_path)
                print("✅ Downloaded glossary.json.")
            except Exception as e:
                print(f"⚠️ Could not download glossary.json: {e}. Proceeding if available in other sources.")

        # Rebuild FAISS from glossary (this returns an index object and metadata list)
        index, metas = rebuild_faiss_from_glossary(glossary_path=glossary_path)
        print(f"📘 Loaded {len(metas)} glossary entries.")

        # --- 3️⃣ Index Excel (MRCT Glossary)
        print("📑 Scanning Excel files in dataset…")
        repo_files = list_repo_files(repo_id_docs, repo_type="dataset")
        excel_files = [f for f in repo_files if f.lower().endswith((".xlsx", ".xls"))]
    
        model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
        excel_entries = []
    
        for file_name in excel_files:
            print(f"📄 Reading {file_name}…")
            try:
                path = hf_hub_download(repo_id_docs, filename=file_name, repo_type="dataset")
                xls = pd.read_excel(path, sheet_name=None)
                for sheet, df in xls.items():
                    if "Glossary Term" not in df.columns:
                        continue
                    df = df.fillna("").dropna(how="all")
                    for _, row in df.iterrows():
                        term = str(row.get("Glossary Term", "")).strip()
                        if not term:
                            continue
    
                        # Combine all the relevant MRCT fields
                        combined_text = (
                            f"Glossary Term: {term}\n"
                            f"Glossary Definition: {row.get('Glossary Definition','')}\n"
                            f"Use in Context: {row.get('Use in Context','')}\n"
                            f"More Info: {row.get('More Info','')}\n"
                            f"Other Info to Think About When Joining a Study: {row.get('Other Info to Think About When Joining a Study','')}\n"
                            f"Related Terms: {row.get('Related Terms','')}\n"
                            f"Other Resources: {row.get('Other Resources','')}\n"
                            f"Term URL: {row.get('Term URL','')}\n"
                            f"CDISC/NCI URL: {row.get('CDISC/NCI URL','')}\n"
                            f"Version: {row.get('Version','')}"
                        ).strip()
    
                        excel_entries.append({
                            "source": file_name,
                            "sheet": sheet,
                            "term": term,
                            "type": "Excel",
                            "file": file_name,
                            "text": combined_text
                        })
            except Exception as e:
                print(f"⚠️ Error reading {file_name}: {e}")
    
        if excel_entries:
            texts = [e["text"] for e in excel_entries]
            embeddings = model.encode(texts, show_progress_bar=True, convert_to_numpy=True).astype("float32")
            faiss.normalize_L2(embeddings)
            index.add(embeddings)
            metas.extend(excel_entries)
            print(f"✅ Added {len(excel_entries)} Excel entries to FAISS.")


        # ---- Optional: Load web content (may be slow)
        try:
            print("🌐 Loading and embedding web sources…")
            web_entries = web_crawler_loader(
                urls_file="/home/user/app/data/urls.txt",
                cache_path="/home/user/app/persistent/web_cache.json",
                max_pages=3,
                timeout=20,
                force_refresh=False,
            )
            if web_entries:
                web_entries = [e for e in web_entries if len(e.get("text", "")) > 200]
                print(f"✅ Retrieved {len(web_entries)} web entries.")
                web_texts = [e["text"] for e in web_entries]
                web_emb = model.encode(web_texts, show_progress_bar=True, convert_to_numpy=True).astype("float32")
                faiss.normalize_L2(web_emb)
                index.add(web_emb)
                metas.extend(web_entries)
                print("✅ Web content added to FAISS.")
        except Exception as e:
            print(f"⚠️ Web content embedding failed: {e}")

        # --- Save index + meta locally
        faiss_path = os.path.join(local_dir, "faiss.index")
        meta_path = os.path.join(local_dir, "faiss.index.meta.json")
        faiss.write_index(index, faiss_path)
        with open(meta_path, "w", encoding="utf-8") as f:
            json.dump(metas, f, indent=2)
        print(f"💾 Local FAISS saved ({len(metas)} entries).")

        # --- Upload artifacts back to HF dataset (best-effort)
        try:
            _upload_to_dataset(faiss_path, meta_path, repo_id_index)
            print(f"☁️ Uploaded FAISS ({len(metas)} entries) to {repo_id_index}.")
        except Exception as e:
            print(f"⚠️ Upload failed: {e}")

        return f"✅ Rebuild complete: {len(metas)} entries (Glossary + Excel + Web)."
    except Exception as e:
        return f"⚠️ Rebuild failed: {e}"


def rebuild_glossary():
    try:
        from core.glossary_builder import rebuild_and_upload
        rebuild_and_upload()
        return "✅ Glossary rebuilt and uploaded successfully."
    except Exception as e:
        return f"⚠️ Glossary rebuild failed: {e}"


def reset_faiss_cache():
    """
    Completely clears local FAISS and glossary caches, reloads the vector_store module
    (to wipe in-memory runtime caches), then rebuilds glossary + index.
    """
    try:
        # Use the clear helper from core.vector_store if available
        from importlib import reload
        from core import vector_store

        # If vector_store exposes clear_local_faiss, use it (safe and logged)
        if hasattr(vector_store, "clear_local_faiss"):
            vector_store.clear_local_faiss()
        else:
            # fallback: manually delete persistent/runtime files
            paths = [
                "/home/user/app/persistent/faiss.index",
                "/home/user/app/persistent/faiss.index.meta.json",
                "/home/user/app/persistent/glossary.json",
                "/home/user/app/runtime_faiss",
            ]
            for p in paths:
                if os.path.exists(p):
                    try:
                        if os.path.isdir(p):
                            _shutil.rmtree(p, ignore_errors=True)
                        else:
                            os.remove(p)
                        print(f"🗑️ Deleted: {p}")
                    except Exception:
                        pass

        # reload the module to clear any in-memory caches
        reload(vector_store)
        print("♻️ FAISS runtime module reloaded to ensure fresh index rebuild.")

        msg = "🧹 Local FAISS + glossary cache cleared. Starting full rebuild...\n\n"
        msg += rebuild_glossary() + "\n"
        msg += rebuild_index()
        return msg
    except Exception as e:
        return f"⚠️ Reset failed: {e}"


# ----------------------------------------------------------
# CHATBOT CORE
# ----------------------------------------------------------
def chat_answer(query, mode="short"):
    try:
        if not query or not str(query).strip():
            return "<i>⚠️ Please enter a valid query.</i>"
        return summarize_combined(str(query).strip(), mode=mode)
    except Exception as e:
        print("❌ Chatbot error:", e)
        return f"<i>⚠️ Error: {e}</i>"


# ----------------------------------------------------------
# GRADIO UI
# ----------------------------------------------------------
with gr.Blocks(theme="gradio/soft") as demo:
    gr.Markdown(f"# {APP_TITLE}")
    gr.Markdown(APP_DESC)

    query_box = gr.Textbox(
        label="Ask your clinical trial question",
        placeholder="e.g. What is an eCRF?",
        lines=2,
    )
    output_box = gr.HTML(label="Answer")

    with gr.Row():
        submit_btn = gr.Button("🚀 Submit", variant="primary")
        if not PUBLIC_MODE:
            rebuild_btn = gr.Button("🔁 Rebuild Index")
            rebuild_glossary_btn = gr.Button("📘 Rebuild Glossary")
            reset_btn = gr.Button("🧹 Reset FAISS Cache (Full Rebuild)")
            clear_btn = gr.Button("🗑️ Clear Index Only")

    submit_btn.click(fn=chat_answer, inputs=[query_box], outputs=output_box)
    query_box.submit(fn=chat_answer, inputs=[query_box], outputs=output_box)

    if not PUBLIC_MODE:
        rebuild_btn.click(fn=rebuild_index, outputs=output_box)
        rebuild_glossary_btn.click(fn=rebuild_glossary, outputs=output_box)
        reset_btn.click(fn=reset_faiss_cache, outputs=output_box)
        clear_btn.click(fn=clear_index, outputs=output_box)


# ----------------------------------------------------------
# LAUNCH APP
# ----------------------------------------------------------
if __name__ == "__main__":
    print("🚀 Starting Clinical Trial Chatbot…")
    print("🧠 Initializing retriever warm-up…")
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        auth=check_admin_login if not PUBLIC_MODE else None,
        ssr_mode=False,
    )